Misplaced Pages

List of Intel Atom processors

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

CoreExpress modules are complete computer-on-module (COM) highly integrated, compact computers that can be used in an embedded computer board design, much like an integrated circuit component. COMs integrate CPU , memory, graphics, and BIOS , and common I/O interfaces. The interfaces are modern, using only digital buses such as PCI Express , Serial ATA , Ethernet , USB , and HD audio ( Intel High Definition Audio ). All signals are accessible on a high-density, high-speed, 220-pin connector. Although most implementations use Intel processors, the specification is open for different CPU modules.

#195804

31-734: Intel Atom is Intel 's line of low-power, low-cost and low-performance x86 and x86-64 microprocessors . Atom, with codenames of Silverthorne and Diamondville , was first announced on March 2, 2008. For nettop and netbook Atom microprocessors after Diamondville , the memory and graphics controller are moved from the northbridge to the CPU. This explains the drastically increased transistor count for post- Diamondville Atom microprocessors. No official TDP available. For power data see page 129–130. Type 4 SoC: Type 3 SoC: Type 4 SoC: Type 3 SoC: All Atom server processors include ECC support. CE4200 Intel Atom Intel Atom

62-413: A heat spreader , which distributes the component-generated heat onto a larger surface area. In low power applications, this distribution may be enough for complete thermal dissipation . In higher power applications, the heat spreader presents a thermal interface for mating to additional heat dissipating components such as finned heat sinks . Heat spreaders are simpler and more rugged to connect to than

93-587: A custom carrier board, containing the peripherals required for the specific application. In this way, small but highly specialized computer systems can be built. The CoreExpress form factor was originally developed by LiPPERT Embedded Computers and standardized by the Small Form Factor Special Interest Group (SFF-SIG) in March 2010. It was competing with other standards like COM Express or Qseven . Initially adopted by

124-730: A mainboard , like northbridges and southbridges , Atom processors are not available to home users or system builders as separate processors, although they may be obtained preinstalled on some ITX motherboards. The Diamondville and Pineview Atom is used in the HP Mini Series, Asus N10, Lenovo IdeaPad S10 , Acer Aspire One & Packard Bell's "dot" (ZG5), recent ASUS Eee PC systems, Sony VAIO M-series, AMtek Elego, Dell Inspiron Mini Series , Gigabyte M912 , LG X Series, Samsung NC10 , Sylvania g Netbook Meso, Toshiba NB series (100, 200, 205, 255, 300, 500, 505), MSI Wind PC netbooks, RedFox Wizbook 1020i, Sony Vaio X Series, Zenith Z-Book,

155-438: A partial revival of the principles used in earlier Intel designs such as P5 and the i486 , with the sole purpose of enhancing the performance per watt ratio. However, Hyper-Threading is implemented in an easy (i.e., low power) way to employ the whole pipeline efficiently by avoiding typical single thread dependencies. Atom branded processors have historically featured the following microarchitectures: The performance of

186-799: A range of Aleutia desktops, Magic W3, Archos and the ICP-DAS LP-8381-Atom. The Pineview line is also used in multiple AAC devices for the disabled individual who is unable to speak and the AAC device assists the user in everyday communication with dedicated speech software. Intel has applied the Atom branding to product lines targeting several different market segments, including: MID / UMPC / Smartphone , Netbook / Nettop , Tablet , Embedded , Wireless Base Stations (for 5G networking infrastructure), Microserver / Server and Consumer electronics . Intel consumer electronic (CE) SoCs are marketed under

217-414: A result, the ability of an Atom-based system to run 64-bit versions of operating systems may vary from one motherboard to another. Online retailer mini-itx.com has tested Atom-based motherboards made by Intel and Jetway, and while they were able to install 64-bit versions of Linux on Intel-branded motherboards with D2700 (Cedarview; supports maximum of 4 GB memory DDR3-800/1066 ) processors, Intel 64 support

248-515: A single-core Atom is about half that of a Pentium M of the same clock rate . For example, the Atom N270 (1.60 GHz) found in many netbooks such as the Eee PC can deliver around 3300 MIPS and 2.1 GFLOPS in standard benchmarks, compared to 7400 MIPS and 3.9 GFLOPS for the similarly clocked (1.72 GHz) Pentium M 740. The Pineview platform has proven to be only slightly faster than

279-740: Is a direct successor of the Intel A100 and A110 low-power processors (code-named Stealey ), which were built on a 90 nm process, had 512 kB L2 cache and ran at 600 MHz/800 MHz with 3 W TDP (Thermal Design Power) . Prior to the Silverthorne announcement, outside sources had speculated that Atom would compete with AMD 's Geode system-on-a-chip processors, used by the One Laptop per Child (OLPC) project, and other cost and power sensitive applications for x86 processors. However, Intel revealed on October 15, 2007, that it

310-461: Is a line of IA-32 and x86-64 instruction set ultra-low-voltage processors by Intel Corporation designed to reduce electric consumption and power dissipation in comparison with ordinary processors of the Intel Core series. Atom is mainly used in netbooks , nettops , embedded applications ranging from health care to advanced robotics, mobile Internet devices (MIDs) and phones. The line

341-633: Is significantly fewer than the P6 and NetBurst microarchitectures . In the Bonnell microarchitecture, internal micro-ops can contain both a memory load and a memory store in connection with an ALU operation, thus being more similar to the x86 level and more powerful than the micro-ops used in previous designs. This enables relatively good performance with only two integer ALUs, and without any instruction reordering , speculative execution , or register renaming . The Bonnell microarchitecture therefore represents

SECTION 10

#1732794571196

372-537: Is slightly above the average thermal envelope of the Atom, but offers hardware AES support, random number generators , and out-of-order execution. Performance comparisons of the Intel Atom against the Via Nano indicate that a single core Intel Atom is easily outperformed by the Via Nano which is in turn outperformed by a dual core Intel Atom 330 in tests where multithreading is used. The Core 2 Duo SU7300 outperforms

403-614: The Silvermont microarchitecture and released in the second half of 2013, regain 64-bit support, although driver support for Linux and Windows 7 is limited at launch. The lack of 64-bit Windows support for Cedarview processors has been speculated to be due to a driver issue. A member of the Intel Enthusiast Team has stated in a series of posts on enthusiast site Tom's Hardware that while the Atom D2700 (Cedarview)

434-444: The x86-64 instruction set was not added until the desktop Diamondville and mobile Pineview cores. The Atom N2xx and Z5xx series Atom models cannot run x86-64 code. The Centerton server processors also support the x86-64 instruction set. Intel states the Atom supports 64-bit operation only "with a processor, chipset , BIOS " that all support Intel 64 . Those Atom systems not supporting all of these cannot enable Intel 64. As

465-641: The Atom Z5xx series and Diamondville would be called the Atom N2xx series. The more expensive lower-power Silverthorne parts was to be used in Intel mobile Internet devices (MIDs) whereas Diamondville was to be used in low-cost desktop and notebooks. Intel and Lenovo also jointly announced an Atom powered MID called the IdeaPad U8. In April 2008, a MID development kit was announced by Sophia Systems and

496-477: The Atom brand. Prior to application of the Atom brand, there were number of Intel CE SoCs including: Olo River (CE 2110 which had an XScale ARM architecture ) and Canmore (CE 3100 which like Stealey and Tolapai had a 90 nm Pentium M microarchitecture ). Intel Atom CE branded SoCs include: Sodaville , Groveland , and Berryville . All Atom processors implement the IA-32 instruction set ; support for

527-453: The Atom line of CPUs. It was a continuation of the partnership announced by Intel and Google on September 13, 2011, to provide support for the Android operating system on Intel x86 processors. This range competed with existing SoCs developed for the smartphone and tablet market from companies like Texas Instruments , Nvidia , Qualcomm and Samsung . On April 29, 2016, Intel announced

558-474: The Atom line with the Cedar processors. In December 2012, Intel launched the 64-bit Centerton family of Atom CPUs, designed specifically for use in servers . Centerton adds features previously unavailable in Atom processors, such as Intel VT virtualization technology and support for ECC memory . On September 4, 2013, Intel launched a 22 nm successor to Centerton , codenamed Avoton . Intel Atom

589-517: The German LiPPERT and the Swiss company DIGITAL-LOGIC (which has meanwhile been bought by Kontron ), it was later backed up by more than eight vendors including Syslogic. The specification defines a board size of 58 mm × 65 mm, slightly smaller than a credit card and small enough to allow a carrier board in standard PC/104-Plus format. The module can be embedded into

620-733: The decision to cancel the Broxton SoC for smartphones and tablets. Broxton was to use the newest Atom microarchitecture (Goldmont on a 14 nm node) in combination with an Intel modem. Embedded processors based on the ARM version 7 instruction set architecture (such as Nvidia 's Tegra 3 series, TI's 4 series and Freescale's i.MX51 based on the Cortex-A8 core, or the Qualcomm Snapdragon and Marvell Armada 500/600 based on custom ARMv7 implementations) offer similar performance to

651-701: The dual-core Nano. The Xcore86 (also known as the PMX 1000 ) is x586 based System on Chip (SoC) that offers a below average thermal envelope compared to the Atom. In 2014, Kenton Williston of EE Times said that while Atom will not displace ARM from its current markets, the ability to apply the PC architecture into smaller, cheaper and lower power form factors will open up new markets for Intel. In 2014, ARM claimed that Intel's Atom processors offer less compatibility and lower performance than their chips when running Android, and higher power consumption and less battery life for

SECTION 20

#1732794571196

682-671: The first board called CoreExpress -ECO was revealed by a German company LiPPERT Embedded Computers, GmbH. Intel offers Atom based motherboards. In December 2012, Intel released Atom for servers, the S1200 series. The primary difference between these processors and all prior versions, is that ECC memory support has been added, enabling the use of the Atom in mission-critical server environments that demand redundancy and memory failure protection. (with On-die GPU , Intel 64 and Intel VT-x ) Atom processors became available to system manufacturers in 2008. Because they are soldered onto

713-626: The low end Atom chipsets but at roughly one quarter the power consumption, and (like most ARM systems) as a single integrated system on a chip, rather than a two chip solution like the current Atom line. Although the second-generation Atom codenamed "Pineview" should greatly increase its competitiveness in performance/watt, ARM plans to counter the threat with the multi-core capable Cortex-A9 core as used in Nvidia's Tegra 2/3, TI's OMAP 4 series, and Qualcomm 's next-generation Snapdragon series, among others. The Nano and Nano Dual-Core series from VIA

744-572: The previous Diamondville platform. This is because the Pineview platform uses the same Bonnell execution core as Diamondville and is connected to the memory controller via the FSB, hence memory latency and performance in CPU-intensive applications are minimally improved. In March 2009, Intel announced that it would be collaborating with TSMC for the production of the Atom processors. The deal

775-937: The same Intel GMA 3600 or 3650 graphics as the D2700, this indicates that Atom Cedarview systems will remain unable to run 64-bit versions of Windows, even those which have Intel 64 enabled and are able to run 64-bit versions of Linux. The first Atom processors were based on the Bonnell microarchitecture. Those Atom processors are able to execute up to two instructions per cycle. Like many other x86 processors, they translate x86-instructions ( CISC instructions) into simpler internal operations (sometimes referred to as micro-ops , i.e., effectively RISC style instructions) prior to execution. The majority of instructions produce one micro-op when translated, with around 4% of instructions used in typical programs producing multiple micro-ops. The number of instructions that produce more than one micro-op

806-581: The same tasks under both Android and Windows. In February 2017 Cisco reported a clock signal issue that would disable several of its products. Cisco stated, "we expect product failures to increase over the years, beginning after the unit has been in operation for approximately 18 months". Soon after, The Register broke the news that this issue was linked to the Intel Atom SoC, and reports of other vendors being affected started appearing online. CoreExpress CoreExpress modules are mounted on

837-412: Was designed with Intel 64 support, due to a "limitation of the board" Intel had pulled their previously available 64-bit drivers for Windows 7 and would not provide any further 64-bit support. Some system manufacturers have similarly stated that their motherboards with Atom Cedarview processors lack 64-bit support due to a "lack of Intel® 64-bit VGA driver support". Because all Cedarview processors use

868-490: Was developing another new mobile processor, codenamed Diamondville, for OLPC-type devices. "Atom" was the name under which Silverthorne would be sold, while the supporting chipset formerly code-named Menlow was called Centrino Atom. At Spring Intel Developer Forum (IDF) 2008 in Shanghai , Intel officially announced that Silverthorne and Diamondville are based on the same microarchitecture. Silverthorne would be called

899-639: Was not enabled on a Jetway-branded motherboard with a D2550 (Cedarview) processor. Even among Atom-based systems which have Intel 64 enabled, not all are able to run 64-bit versions of Microsoft Windows . For those Pineview processors which support 64-bit operation, Intel Download Center currently provides 64-bit Windows Vista and Windows 7 drivers for Intel GMA 3150 graphics, found in Pineview processors. However, no 64-bit Windows drivers are available for Intel Atom Cedarview processors, released Q3 2011. However, Intel's Bay Trail-M processors, built on

930-572: Was originally designed in 45 nm complementary metal–oxide–semiconductor ( CMOS ) technology and subsequent models, codenamed Cedar , used a 32 nm process. The first generation of Atom processors are based on the Bonnell microarchitecture . On December 21, 2009, Intel announced the Pine Trail platform, including new Atom processor code-named Pineview (Atom N450), with total kit power consumption down 20%. On December 28, 2011, Intel updated

961-580: Was put on hold due to lack of demand in 2010. On September 13, 2011, Intel and Google held a joint announcement of a partnership to provide support in Google's Android operating system for Intel processors (beginning with the Atom). This would allow Intel to supply chips for the growing smartphone and tablet market. Based on this collaboration, in 2012, Intel announced a new system on chip (SoC) platform designed for smartphones and tablets which would use

List of Intel Atom processors - Misplaced Pages Continue

#195804