An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect , breaking waves , cabbeling , and temperature and salinity differences. Depth contours , shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents move both horizontally, on scales that can span entire oceans, as well as vertically, with vertical currents ( upwelling and downwelling ) playing an important role in the movement of nutrients and gases, such as carbon dioxide, between the surface and the deep ocean.
40-805: Baffin Island Current (or Baffin Current ) is an ocean current running south down the western side of Baffin Bay in the Arctic Ocean , along Baffin Island . Its sources are the West Greenland Current and outflow from the Arctic Ocean . Its speed is approximately 17 km (11 mi) per day. 64°43′26″N 62°37′44″W / 64.724°N 62.629°W / 64.724; -62.629 This Greenland location article
80-632: A counterclockwise pattern. Hurricanes and tropical storms (massive low-pressure systems) spin counterclockwise in the Northern Hemisphere. The shadow of a sundial moves clockwise on latitudes north of the subsolar point and anticlockwise to the south. During the day at these latitudes, the Sun tends to rise to its maximum at a southerly position. Between the Tropic of Cancer and the Equator,
120-399: A decisive role in influencing the climates of regions through which they flow. Ocean currents are important in the study of marine debris . Upwellings and cold ocean water currents flowing from polar and sub-polar regions bring in nutrients that support plankton growth, which are crucial prey items for several key species in marine ecosystems . Ocean currents are also important in
160-569: A much colder northern Europe and greater sea-level rise along the U.S. East Coast." In addition to water surface temperatures, the wind systems are a crucial determinant of ocean currents. Wind wave systems influence oceanic heat exchange, the condition of the sea surface, and can alter ocean currents. In the North Atlantic, equatorial Pacific, and Southern Ocean, increased wind speeds as well as significant wave heights have been attributed to climate change and natural processes combined. In
200-453: A result, influence the biological composition of oceans. Due to the patchiness of the natural ecological world, dispersal is a species survival mechanism for various organisms. With strengthened boundary currents moving toward the poles, it is expected that some marine species will be redirected to the poles and greater depths. The strengthening or weakening of typical dispersal pathways by increased temperatures are expected to not only impact
240-418: A significant role in influencing climate, and shifts in climate in turn impact ocean currents. Over the last century, reconstructed sea surface temperature data reveal that western boundary currents are heating at double the rate of the global average. These observations indicate that the western boundary currents are likely intensifying due to this change in temperature, and may continue to grow stronger in
280-405: Is a stub . You can help Misplaced Pages by expanding it . This article about a specific ocean current is a stub . You can help Misplaced Pages by expanding it . Ocean current Ocean currents flow for great distances and together they create the global conveyor belt , which plays a dominant role in determining the climate of many of Earth's regions. More specifically, ocean currents influence
320-425: Is also known as the ocean's conveyor belt. Where significant vertical movement of ocean currents is observed, this is known as upwelling and downwelling . The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content , factors which together determine the density of seawater. The thermohaline circulation is a part of the large-scale ocean circulation that
360-467: Is defined as being in the same celestial hemisphere relative to the invariable plane of the Solar System as Earth's North Pole . Due to Earth's axial tilt of 23.439281°, there is a seasonal variation in the lengths of the day and night. There is also a seasonal variation in temperatures, which lags the variation in day and night. Conventionally, winter in the Northern Hemisphere is taken as
400-537: Is driven by global density gradients created by surface heat and freshwater fluxes . Wind -driven surface currents (such as the Gulf Stream ) travel polewards from the equatorial Atlantic Ocean , cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water ). This dense water then flows into the ocean basins . While the bulk of it upwells in the Southern Ocean ,
440-482: The Atlantic meridional overturning circulation (AMOC) is in danger of collapsing due to climate change, which would have extreme impacts on the climate of northern Europe and more widely, although this topic is controversial and remains an active area of research. The "State of the cryosphere" report, dedicates significant space to AMOC, saying it may be enroute to collapse because of ice melt and water warming. In
SECTION 10
#1732772446053480-506: The East Australian Current , global warming has also been accredited to increased wind stress curl , which intensifies these currents, and may even indirectly increase sea levels, due to the additional warming created by stronger currents. As ocean circulation changes due to climate, typical distribution patterns are also changing. The dispersal patterns of marine organisms depend on oceanographic conditions, which as
520-465: The Northern temperate zone . The changes in these regions between summer and winter are generally mild, rather than extreme hot or cold. However, a temperate climate can have very unpredictable weather. Tropical regions (between the Tropic of Cancer and the Equator, 0° latitude) are generally hot all year round and tend to experience a rainy season during the summer months, and a dry season during
560-583: The last glacial period ended about 10,000 years ago. Earth is currently in an interglacial period of the Quaternary , called the Holocene . The glaciations that occurred during the glacial period covered many areas of the Northern Hemisphere. The Arctic is a region around the North Pole (90° latitude ). Its climate is characterized by cold winters and cool summers. Precipitation mostly comes in
600-533: The southern hemisphere . In addition, the areas of surface ocean currents move somewhat with the seasons ; this is most notable in equatorial currents. Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing western boundary current is relatively narrow. Large scale currents are driven by gradients in water density , which in turn depend on variations in temperature and salinity. This thermohaline circulation
640-492: The westerlies , push the currents back to the east, producing a closed clockwise loop. Its surface is 60.7% water, compared with 80.9% water in the case of the Southern Hemisphere , and it contains 67.3% of Earth's land. The continents of North America and mainland Eurasia are located entirely in the Northern Hemisphere, together with about two-thirds of Africa and a small part of South America . During
680-516: The 2.5 million years of the Pleistocene , numerous cold phases called glacials ( Quaternary ice age ), or significant advances of continental ice sheets, in Europe and North America , occurred at intervals of approximately 40,000 to 100,000 years. The long glacial periods were separated by more temperate and shorter interglacials which lasted about 10,000–15,000 years. The last cold episode of
720-734: The Sun can be seen to the north, directly overhead, or to the south at noon, depending on the time of year. In the Southern Hemisphere, the midday Sun is predominantly in the north. When viewed from the Northern Hemisphere, the Moon appears inverted compared to a view from the Southern Hemisphere. The North Pole faces away from the Galactic Center of the Milky Way . This results in the Milky Way being sparser and dimmer in
760-477: The atmosphere and the deep ocean due to the way water upwells and downwells on either side of it. Ocean currents are patterns of water movement that influence climate zones and weather patterns around the world. They are primarily driven by winds and by seawater density, although many other factors influence them – including the shape and configuration of the ocean basin they flow through. The two basic types of currents – surface and deep-water currents – help define
800-414: The character and flow of ocean waters across the planet. Ocean currents are driven by the wind, by the gravitational pull of the moon in the form of tides , and by the effects of variations in water density. Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above
840-459: The circulation has a large impact on the climate of the Earth. The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is imprecisely used to refer to the meridional overturning circulation , (MOC). Since the 2000s an international program called Argo has been mapping the temperature and salinity structure of
SECTION 20
#1732772446053880-554: The cost and emissions of shipping vessels. Ocean currents can also impact the fishing industry , examples of this include the Tsugaru , Oyashio and Kuroshio currents all of which influence the western North Pacific temperature, which has been shown to be a habitat predictor for the Skipjack tuna . It has also been shown that it is not just local currents that can affect a country's economy, but neighboring currents can influence
920-570: The dispersal and distribution of many organisms, inclusing those with pelagic egg or larval stages. An example is the life-cycle of the European Eel . Terrestrial species, for example tortoises and lizards, can be carried on floating debris by currents to colonise new terrestrial areas and islands . The continued rise of atmospheric temperatures is anticipated to have various effects on the strength of surface ocean currents, wind-driven circulation and dispersal patterns. Ocean currents play
960-652: The form of snow. Areas inside the Arctic Circle (66°34′ latitude) experience some days in summer when the Sun never sets, and some days during the winter when it never rises. The duration of these phases varies from one day for locations right on the Arctic Circle to several months near the Pole, which is the middle of the Northern Hemisphere. Between the Arctic Circle and the Tropic of Cancer (23°26′ latitude) lies
1000-509: The large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them, and the Coriolis effect plays a major role in their development. The Ekman spiral velocity distribution results in the currents flowing at an angle to the driving winds, and they develop typical clockwise spirals in the northern hemisphere and counter-clockwise rotation in
1040-462: The near future. There is evidence that surface warming due to anthropogenic climate change has accelerated upper ocean currents in 77% of the global ocean. Specifically, increased vertical stratification due to surface warming intensifies upper ocean currents, while changes in horizontal density gradients caused by differential warming across different ocean regions results in the acceleration of surface zonal currents . There are suggestions that
1080-515: The ocean with a fleet of automated platforms that float with the ocean currents. The information gathered will help explain the role the oceans play in the earth's climate. Ocean currents affect temperatures throughout the world. For example, the ocean current that brings warm water up the north Atlantic to northwest Europe also cumulatively and slowly blocks ice from forming along the seashores, which would also block ships from entering and exiting inland waterways and seaports, hence ocean currents play
1120-471: The oldest waters (with a transit time of around 1000 years) upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of
1160-625: The period from the December solstice (typically December 21 UTC ) to the March equinox (typically March 20 UTC), while summer is taken as the period from the June solstice through to the September equinox (typically on 23 September UTC). The dates vary each year due to the difference between the calendar year and the astronomical year . Within the Northern Hemisphere, oceanic currents can change
1200-582: The same latitude North America's weather was colder. A good example of this is the Agulhas Current (down along eastern Africa), which long prevented sailors from reaching India. In recent times, around-the-world sailing competitors make good use of surface currents to build and maintain speed. Ocean currents can also be used for marine power generation , with areas of Japan, Florida and Hawaii being considered for test projects. The utilization of currents today can still impact global trade, it can reduce
1240-561: The same latitude. Another example is Lima, Peru , whose cooler subtropical climate contrasts with that of its surrounding tropical latitudes because of the Humboldt Current . The largest ocean current is the Antarctic Circumpolar Current (ACC), a wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between
Baffin Island Current - Misplaced Pages Continue
1280-450: The same time, the Antarctic Circumpolar Current (ACC) is also slowing down and is expected to lose 20% of it power by the year 2050, "with widespread impacts on ocean circulation and climate". UNESCO mentions that the report in the first time "notes a growing scientific consensus that melting Greenland and Antarctic ice sheets, among other factors, may be slowing important ocean currents at both poles, with potentially dire consequences for
1320-413: The survival of native marine species due to inability to replenish their meta populations but also may increase the prevalence of invasive species . In Japanese corals and macroalgae, the unusual dispersal pattern of organisms toward the poles may destabilize native species. Knowledge of surface ocean currents is essential in reducing costs of shipping, since traveling with them reduces fuel costs. In
1360-486: The temperature of the regions through which they travel. For example, warm currents traveling along more temperate coasts increase the temperature of the area by warming the sea breezes that blow over them. Perhaps the most striking example is the Gulf Stream , which, together with its extension the North Atlantic Drift , makes northwest Europe much more temperate for its high latitude than other areas at
1400-518: The thermocline), and deep ocean. Ocean currents are measured in units of sverdrup (Sv) , where 1 Sv is equivalent to a volume flow rate of 1,000,000 m (35,000,000 cu ft) per second. There are two main types of currents, surface currents and deep water currents. Generally surface currents are driven by wind systems and deep water currents are driven by differences in water density due to variations in water temperature and salinity . Surface oceanic currents are driven by wind currents,
1440-885: The viability of local fishing industries. Currents of the Arctic Ocean Currents of the Atlantic Ocean Currents of the Indian Ocean Currents of the Pacific Ocean Currents of the Southern Ocean Oceanic gyres Northern hemisphere The Northern Hemisphere is the half of Earth that is north of the Equator . For other planets in the Solar System , north
1480-448: The weather patterns that affect many factors within the north coast. For the same reason, flows of air down toward the northern surface of the Earth tend to spread across the surface in a clockwise pattern. Thus, clockwise air circulation is characteristic of high pressure weather cells in the Northern Hemisphere. Conversely, air rising from the northern surface of the Earth (creating a region of low pressure) tends to draw air toward it in
1520-407: The weather patterns that affect many factors within the north coast. Such events include El Niño–Southern Oscillation . Trade winds blow from east to west just above the equator. The winds pull surface water with them, creating currents, which flow westward due to the Coriolis effect . The currents then bend to the right, heading north. At about 30 degrees north latitude, a different set of winds,
1560-527: The wind powered sailing-ship era, knowledge of wind patterns and ocean currents was even more essential. Using ocean currents to help their ships into harbor and using currents such as the gulf stream to get back home. The lack of understanding of ocean currents during that time period is hypothesized to be one of the contributing factors to exploration failure. The Gulf Stream and the Canary current keep western European countries warmer and less variable, while at
1600-489: The winter months. In the Northern Hemisphere, objects moving across or above the surface of the Earth tend to turn to the right because of the Coriolis effect . As a result, large-scale horizontal flows of air or water tend to form clockwise-turning gyres . These are best seen in ocean circulation patterns in the North Atlantic and North Pacific oceans. Within the Northern Hemisphere, oceanic currents can change
#52947