Seaslug was a first-generation surface-to-air missile designed by Armstrong Whitworth (later part of the Hawker Siddeley group) for use by the Royal Navy . Tracing its history as far back as 1943's LOPGAP design, it came into operational service in 1961 and was still in use at the time of the Falklands War in 1982.
151-626: The Bristol Bloodhound is a British ramjet powered surface-to-air missile developed during the 1950s. It served as the UK's main air defence weapon into the 1990s and was in large-scale service with the Royal Air Force (RAF) and the forces of four other countries. Part of sweeping changes to the UK's defence posture, the Bloodhound was intended to protect the RAF's V bomber bases to preserve
302-400: A convergent–divergent nozzle . Although ramjets have been run as slow as 45 metres per second (160 km/h; 100 mph), below about Mach 0.5 (170 m/s; 610 km/h; 380 mph) they give little thrust and are highly inefficient due to their low pressure ratios. Above this speed, given sufficient initial flight velocity, a ramjet is self-sustaining. Unless the vehicle drag
453-763: A long-range antipodal bomber , similar to the Sänger-Bredt bomber , but powered by ramjet instead of rocket. In 1954, NPO Lavochkin and the Keldysh Institute began development of a Mach 3 ramjet-powered cruise missile, Burya . This project competed with the R-7 ICBM developed by Sergei Korolev , but was cancelled in 1957. Several ram jets were designed, built, and ground-tested at the Kawasaki Aircraft Company's facility in Gifu during
604-434: A pitot -type opening for the inlet. This is followed by a widening internal passage (subsonic diffuser) to achieve a lower subsonic velocity that is required at the combustor. At low supersonic speeds a normal (planar) shock wave forms in front of the inlet. For higher supersonic speeds the pressure loss through the shock wave becomes prohibitive and a protruding spike or cone is used to produce oblique shock waves in front of
755-614: A semi-active radar homing system which was more suitable for development of a long-range system in the future. English Electric continued development of this "new" Red Heathen. Later, looking for a second approach to the requirement, using a ramjet instead of a rocket motor, the RAE approached de Havilland , but they declined due to workload. The RAE then turned to Bristol Aerospace , signing an agreement late in 1949 for "Red Duster", which Bristol referred to as "Project 1220". Armstrong, Bristol and EE were now all working on different approaches to
906-409: A turbine , which generates its own compressed air (i.e. ram air in a ramjet) in order to generate thrust. The diffuser converts the high velocity of the air approaching the intake into high (static) pressure required for combustion. High combustion pressures minimise entropy rise during heat addition, this minimising wasted thermal energy in the exhaust gases Subsonic and low-supersonic ramjets use
1057-630: A Type 992Q target indicator radar (3 GHz, 1.75 MW peak power, 90 km range); a Type 278 height finding set (80–90 km); a Type 901 missile guidance radar (X band, 70 km range), that in the Sea Slug Mk 2 had a continuous wave signal (but it was still a beam riding designation radar); a Type 904 fire control radar (used in the MRS-3 system, X-band, 50 kW, 35 km range) for surface targeting. The missile had four wrap-around booster motors that separated after launch. After separation,
1208-510: A combustor exit stagnation temperature of the order of 2,400 K (2,130 °C; 3,860 °F) for kerosene . Normally, the combustor must be capable of operating over a wide range of throttle settings, matching flight speeds and altitudes. Usually, a sheltered pilot region enables combustion to continue when the vehicle intake undergoes high yaw/pitch during turns. Other flame stabilization techniques make use of flame holders, which vary in design from combustor cans to flat plates, to shelter
1359-478: A common ring, ensuring they separated in different directions. This resulted in the definitive XTV-5. As the design matured, the engine requirements were finalised. The resulting Bristol Thor was originally designed in conjunction with Boeing , which had extensive experience with the similar engines of the BOMARC missile . Testing of the prototype production versions, known as XRD (eXperimental Red Duster), moved to
1510-429: A compact mechanism for high-speed, such as missiles . Weapons designers are investigating ramjet technology for use in artillery shells to increase range; a 120 mm ramjet-assisted mortar shell is thought to be able to travel 35 km (22 mi). They have been used, though not efficiently, as tip jets on the ends of helicopter rotors. L'Autre Monde: ou les États et Empires de la Lune ( Comical History of
1661-414: A final normal shock that occurs at the inlet entrance lip. The diffuser in this case consists of two parts, the supersonic diffuser, with shock waves external to the inlet, followed by the internal subsonic diffuser. At higher speeds still, part of the supersonic diffusion has to take place internally, requiring external and internal oblique shock waves. The final normal shock has to occur in the vicinity of
SECTION 10
#17327810711651812-622: A frequency of 2,400 Hz." Seaslug was a high-performance weapon in the 1960s, with a single-shot kill probability of 92%, although other sources give lower kill probabilities: 75% for the Mk 1 and 65% for the Mk 2. The first four ships of the County -class (Batch 1) operated the Seaslug Mk 1, while the final four (Batch 2) were fitted with the ADAWS command and control system which enabled them to carry
1963-640: A good interim development. After considerable debate, in September 1948 Seaslug was restarted as "insurance" against problems in Red Heathen, and in 1949, moved to "top priority". A development contract was signed with Armstrong Whitworth lead development, and the Project 502 industry group was organized in 1949 to produce it. The DRPC suggested downgrading Red Heathen to use a missile with performance roughly equal to Seaslug, but replacing its guidance with
2114-462: A hot fuel-rich gas which is burnt in the ramcombustor with the compressed air supplied by the intake(s). The flow of gas improves the mixing of the fuel and air and increases total pressure recovery. In a throttleable ducted rocket, also known as a variable flow ducted rocket, a valve allows the gas generator exhaust to be throttled allowing thrust control. Unlike an LFRJ, solid propellant ramjets cannot flame out . The ducted rocket sits somewhere between
2265-407: A larger number of small ships with 10 to 20 missiles than one larger one, but attempts to design such a ship resulted in one with room for the weapons but not the crew needed to operate them. In May 1955 a wide variety of plans for designs between the two extremes were compared, ranging from 9,850 tons down to 4,550. After continual comparison and revision, these plans finally gelled around what became
2416-499: A last-ditch defence. The missile portion was the newest and least understood technology. In order to deploy quickly and gain experience with these systems, the "Stage Plan" was developed. "Stage 1" called for missiles based on a LOPGAP/Seaslug-type missile with a range of only 20 miles with capabilities against subsonic or low-supersonic attacking aircraft, which were assumed to be at medium or high altitudes. The original long-range Red Heathen concept then became Stage 2, aiming to replace
2567-428: A low-performance system, more of a drone aircraft than a missile, which had to be manually guided in front of approaching aircraft using radio control and then detonated by the operator. This limited it to daytime visual range and good weather, neither of which was satisfying. In contrast to Stooge, Brakemine was a more modern concept. While it offered only marginally better range than Stooge, its beam riding guidance
2718-655: A meeting of the Defence Research Policy Committee (DRPC) and started a process of pushing through four key missile programs that were intended to enter service in 1957, Seaslug, a longer ranged Army/Air Force surface-to-air missile known as Red Heathen , the Blue Boar television guided glide bomb , and the Red Hawk air-to-air missile . In March 1948 a new report from the DRPC noted there
2869-462: A minimum flow area known as the throat, which is followed by the subsonic diffuser. As with other jet engines, the combustor raises the air temperature by burning fuel. This takes place with a small pressure loss. The air velocity entering the combustor has to be low enough such that continuous combustion can take place in sheltered zones provided by flame holders . A ramjet combustor can safely operate at stoichiometric fuel:air ratios. This implies
3020-444: A minimum of 5,000 yd (4.6 km). Maximum altitude should be 55,000 ft, but 45,000 would be considered acceptable. A later updated pushed the range to 30,000–60,000 yd (27–55 km) against a 600 kn (1,100 km/h), later 650 kn (1,200 km/h), target. It was assumed the targets would "jink" at 1G, so the missile needed to maneuver at 4G at sea level and 2.5G at 40,000 ft. Additional requirements were
3171-529: A modified Polikarpov I-15 . Merkulov designed a ramjet fighter "Samolet D" in 1941, which was never completed. Two of his DM-4 engines were installed on the Yak-7 PVRD fighter during World War II. In 1940, the Kostikov-302 experimental plane was designed, powered by a liquid fuel rocket for take-off and ramjet engines for flight. That project was cancelled in 1944. In 1947, Mstislav Keldysh proposed
SECTION 20
#17327810711653322-632: A new solid fuel rocket had been developed at the Summerfield Research Station which provided the desired range. Continual tests took place over the next four years using both the Clausen Rolling Platform at RAE Aberporth and the Girdle Ness . A final series of tests at sea, which culminated in sixteen successful firings, finally cleared the missile for service in 1961. After more than 250 launches,
3473-446: A new design emerged that demanded the speed to keep up with a fleet in combat, have guns limited to self-defence, and carrying a single twin-missile launcher. The designs were continually modified in order to find a suitable arrangement. They started as early as 1953 with a mid-sized cruiser of 15,000 long tons (15,000 t) carrying 60 to 90 missiles and a crew of 900. Admiral Ralph Edwards pointed out it would be more useful to have
3624-551: A new missile to produce a Brakemine-like system but with considerably higher accuracy and much longer range. This was initially known as LOPGAP , for Liquid-Oxygen and Petrol, the proposed fuel. In January 1947, the new Navy design was given the name Seaslug. Around the same time, an effort was underway to centralise all guided missile development at the Royal Aircraft Establishment 's (RAE) new Guided Weapons Department. They took over LOPGAP development from
3775-410: A nozzle to accelerate it to supersonic speeds and generate forward thrust . Ramjets are much less complex than turbojets or turbofans , requiring only an air intake, a combustor, and a nozzle to be built. Additionally, ramjets have little to no moving parts - liquid-fuel ramjets have only a fuel pump, whilst solid-fuel ramjets lack even this. By comparison, a turbojet uses a compressor driven by
3926-495: A proximity fuzed continuous rod warhead (known as the K11A1) designed to destroy attacking aircraft without requiring a direct hit. The acceleration of the Mk. II can be gauged from the data on an information board at the now closed Bristol Aeroplane Company Museum at Kemble Airfield , Kemble, Gloucestershire , where a complete Bloodhound could be seen, since moved to Aerospace Bristol . The Mark of Bloodhound this data refers to
4077-402: A radio proximity fuze and 200 lb (91 kg) blast warhead. The Mark 1 was a beam rider missile, meaning the target had to be continually illuminated by the directing radar, so the system was limited to engaging only the number of targets that there were radars to track and lock on. The Seaslug Mark 2 was based on the aborted Blue Slug programme to develop an anti-ship missile using
4228-572: A range of about 105 kilometres (65 miles). It was also used as a surface-to-surface weapon and was modified to destroy land-based radars. Using technology proven by the AQM-60, In the late 1950s and early 1960s the US produced a widespread defense system called the CIM-10 Bomarc , which was equipped with hundreds of nuclear armed ramjet missiles with a range of several hundred miles. It was powered by
4379-636: A reduced version of the Comprehensive Display System (CDS), which was fed by a CDS-link receiver called DPD (Digital Picture Transmission or Translation). The final set for the County ships, actually more a cruiser type than a destroyer, was quite complex: a Type 965 radar for early warning (P-band, 450 kW peak power, range over 175 km), in the County Batch 2 the double antenna AKE-2 had two different frequency settings;
4530-612: A reorganisation of existing radars under the ROTOR project along with new control centres to better coordinate fighters and anti-aircraft guns. This was strictly a stop-gap measure however; over the longer term there would be a requirement for deployment of new long-range radars in place of the Chain Home systems from the war, construction of command and control sites able to survive a nuclear attack, interceptors of ever-increasing performance, and anti-aircraft missiles and guns to provide
4681-420: A result of these changes, the program was seen as having two stages, Stage 1 would deliver missiles in the mid-1950s with roughly 20 miles (32 km) range with capability mostly against subsonic targets, and a Stage 2 of the early 1960s would have a greatly extended range on the order of 150 miles (240 km) and able to attack supersonic aircraft. Two test systems emerged from this centralization. The CTV.1
Bloodhound (missile) - Misplaced Pages Continue
4832-410: A second wave of attacking IAI Dagger fighters. It was unguided because the aircraft was too low to be acquired; the launch was intended to deter the pilot and to remove the exposed missile from the ship because it posed a fire hazard. The first combat use in the surface-to-surface role was during a shore bombardment on 26 May, when HMS Glamorgan fired Seaslugs at Port Stanley Airport claiming
4983-465: A series of four smaller rockets designed to "wrap around" the missile fuselage. This layout was tested on the 1 ⁄ 3 scale XTV-2, the full-sized but unpowered XTV-3 that tested the new boosters, and finally the full-sized and powered XTV-4. The final modification, first tested on the XTV-3, was to replace the four rear fins with two larger ones, which allowed the four booster motors to be mounted on
5134-477: A solid fuel ramjet (SFRJ) vehicle test in August 2022. In 2023, General Electric demonstrated a ramjet with rotating detonation combustion. It is a turbine-based combined-cycle engine that incorporates a In the late 1950s, 1960s, and early 1970s, the UK developed several ramjet missiles. The Blue Envoy project was supposed to equip the country with a long range ramjet powered air defense against bombers, but
5285-593: A special test rig on a Dornier Do 17 Z at flight speeds of up to 200 metres per second (720 km/h). Later, as petrol became scarce in Germany, tests were carried out with blocks of pressed coal dust as a fuel (see e.g. Lippisch P.13a ), which were not successful due to slow combustion. Stovepipe (flying/flaming/supersonic) was a popular name for the ramjet during the 1950s in trade magazines such as Aviation Week & Space Technology and other publications such as The Cornell Engineer. The simplicity implied by
5436-488: A speed of Mach 3. It was used successfully in combat against multiple types of aircraft during the Falklands War . Eminent Swiss astrophysicist Fritz Zwicky was research director at Aerojet and holds many patents in jet propulsion. Patents US 5121670 and US 4722261 are for ram accelerators . The U.S. Navy would not allow Zwicky to publicly discuss his invention, US 2461797
5587-439: A tandem arrangement. Integrated boosters provide a more efficient packaging option, since the booster propellant is cast inside the otherwise empty combustor. This approach has been used on solid-fuel ramjets (SFRJ), for example 2K12 Kub , liquid, for example ASMP , and ducted rocket, for example Meteor , designs. Integrated designs are complicated by the different nozzle requirements of the boost and ramjet flight phases. Due to
5738-521: A taxi with their Ferranti counterparts hatched a new plan to adopt the Blue Envoy ramjets and radars to a lengthened Bloodhound, and submitted this for study. The proposal was accepted, producing the Bloodhound Mk. II . The Mk. II featured a more powerful Thor engine based on changes investigated in Blue Envoy. The increased power allowed the weights to increased, and to take advantage of this
5889-565: A very small unboosted warhead with an all-plutonium fissile core tested at Maralinga , which was, in turn, replaced by Gwen — a British version of the US W54 Gnat unboosted warhead of approximate yield 0.5–2 kiloton of TNT-equivalent. The final warhead choice was Tony - a UK version of the W44 Tsetse boosted warhead, but all nuclear options for Seaslug were subsequently abandoned, and no nuclear-armed variant of Seaslug
6040-543: Is extremely high, the engine/airframe combination tends to accelerate to higher and higher flight speeds, substantially increasing the air intake temperature. As this could damage the engine and/or airframe integrity, the fuel control system must reduce fuel flow to stabilize speed and, thereby, air intake temperature. Due to the stoichiometric combustion temperature, efficiency is usually good at high speeds (around Mach 2 – Mach 3, 680–1,000 m/s, 2,500–3,700 km/h, 1,500–2,300 mph), whereas at low speeds
6191-557: Is for the Underwater Jet, a ram jet that performs in a fluid medium. Time magazine reported on Zwicky's work. The first part of a ramjet is its diffuser (compressor) in which the forward motion of the ramjet is used to raise the pressure of its working fluid (air) as required for combustion. Air is compressed, heated by combustion and expanded in a thermodynamic cycle known as the Brayton cycle , before being passed through
Bloodhound (missile) - Misplaced Pages Continue
6342-485: Is not given but is presumably the Mark II since the top speed of the Mk. I is Mach 2.2: "By the time the missile has just cleared the launcher it is doing 400 mph. By the time the missile is 25 feet from the launcher it has reached the speed of sound (around 720 mph). Three seconds after launch, as the four boost rockets fall away, it has reached Mach 2.5 which is roughly 1,800 mph" The planned Mk III (also known as RO 166)
6493-412: Is through ablation of the propellant by the hot compressed air from the intake(s). An aft mixer may be used to improve combustion efficiency . SFIRRs are preferred over LFRJs for some applications because of the simplicity of the fuel supply, but only when the throttling requirements are minimal, i.e. when variations in altitude or speed are limited. In a ducted rocket, a solid fuel gas generator produces
6644-521: The Air Ministry responsible for radar development. Over the next year, first Brakemine and then Stooge were moved to the RAE. In a January 1947 Navy review, the program was given the name Seaslug. This called for a significantly larger weapon than initially envisioned, capable of single-stage vertical launch, a warhead (and guidance) of 200 lb (91 kg) and an all-up weight of 1,800 lb (820 kg). Development continued as before but
6795-485: The Austro-Hungarian Army , but the proposal was rejected. After World War I, Fonó returned to the subject. In May 1928 he described an "air-jet engine" which he described as suitable for high-altitude supersonic aircraft, in a German patent application. In an additional patent application, he adapted the engine for subsonic speed. The patent was granted in 1932 (German Patent No. 554,906, 1932-11-02). In
6946-641: The County-class destroyer . Test firings of the GAP-based examples, now known as Rocket Test Vehicle 1, or RTV.1, demonstrated beam riding in October 1956. The Navy had set a date of 1957 for a broad modernization of the fleet, so they desired Seaslug to be cleared for service in 1956. To this end, they accepted the use of liquid fuels in spite of the Navy's concerns with these fuels on ships. However, by 1956
7097-562: The Leduc 0.10 was one of the first ramjet-powered aircraft to fly, in 1949. The Nord 1500 Griffon reached Mach 2.19 (745 m/s; 2,680 km/h) in 1958. In 1915, Hungarian inventor Albert Fonó devised a solution for increasing the range of artillery , comprising a gun-launched projectile united with a ramjet propulsion unit, thus giving a long range from relatively low muzzle velocities, allowing heavy shells to be fired from relatively lightweight guns. Fonó submitted his invention to
7248-640: The Lockheed D-21 spy drone. In the late 1950s the US Navy introduced a system called the RIM-8 Talos , which was a long range surface-to-air missile fired from ships. It successfully shot down enemy fighters during the Vietnam War , and was the first ship-launched missile to destroy an enemy aircraft in combat. On 23 May 1968, a Talos fired from USS Long Beach shot down a Vietnamese MiG at
7399-527: The Royal Air Force ( Bloodhound ) and the British Army ( Thunderbird ) were not required. Once the boosters were jettisoned the control surfaces became active. Guidance was by radar beam-riding, the beam to be provided by Type 901 fire-control radar . There were four flight modes: Electrical power when the missile was in flight was provided by a flux switching alternator with a six tooth rotor. "The 1.5 kVA Seaslug generator ran at 24,000 rev/min with
7550-632: The Woomera range in South Australia in mid-1953. These proved very disappointing due to ramjet problems, which were traced to the use of a flare as an ignition source inside the engine. This was replaced with an igniter design provided by the National Gas Turbine Establishment and the problems were quickly sorted out. Firings against GAF Jindivik target aircraft started in 1956, and eventually 500 tests of all of
7701-521: The deterrent force from attacking bombers that made it past the Lightning interceptor force . Bloodhound Mk. I entered service in December 1958, the first British guided weapon to enter full operational service. This was part of Stage 1 upgrades to the defensive systems, in the later Stage 2, both Bloodhound and the fighters would be replaced by a longer-range missile code named Blue Envoy . When this
SECTION 50
#17327810711657852-455: The kamikaze threat in the Pacific. The British Army was interested in a longer-ranged system to supplant or even replace their anti-aircraft artillery . The Royal Air Force was largely uninterested at this point, and put their effort into air-to-air missiles . From these different needs, two experimental SAGW systems emerged, the Navy's Fairey Stooge and Army's Brakemine . Stooge was
8003-560: The American Terrier missile was somewhat shorter at 13 ft 6 in (4.11 m), but this required an additional tandem booster which took the overall length to 28 ft 6 in (8.69 m). In 1954, during another review of the Navy's future operations, consideration turned from a "hot war" against the Soviets to a series of "warm wars" in the third world . Among other changes brought about by this review, including
8154-640: The Chileans would accept a package to upgrade the ships to operate Seadart, but this was not taken up and they were transferred complete with Seaslug. The Chilean ships were later refitted with an extended flight deck in place of the Seaslug launcher. There were two main variants of the Seaslug: The Seaslug Mark 1 was powered by the solid-fuel Foxhound (390 kg fuel) sustainer motor and Gosling (145 kg) booster motors. It had
8305-548: The Hercules or the Soviets' S-25 Berkut , although Sweden operated its Bloodhounds in a semi-mobile form. Bloodhound shares much in common with the English Electric Thunderbird , including some of the radar systems and guidance features. Thunderbird was smaller and much more mobile, seeing service with the British Army and several other forces. The two missiles served in tandem for some time, until
8456-491: The Mediterranean Sea during Allied operations against Italy. These weapons were released outside of anti-aircraft gun range, which meant that naval operations lacking complete air superiority would be open to attack with no effective response from the ships. A solution for long-range anti-aircraft was required. On 16 March 1944 the first meeting of the "Guided Anti-Aircraft Projectile Committee", or GAP Committee,
8607-530: The Mk. I that had limited performance advantages compared to the Thunderbird, the Mk. II was a much more formidable weapon, with capabilities against Mach 2 aircraft at high altitudes. Several new Bloodhound bases were set up for the Mk. II, and some of the Mk. I bases were updated to host the Mk. II. There was an export version planned, Bloodhound 21, that had less sophisticated electronic countermeasures equipment. The planned Mk. III (also known as RO 166)
8758-452: The Navy, as well as using up most existing Stooge and Brakemine systems to gain familiarity with the needs of missile testing. They also issued a requirement for the Army and Air Force for a very long-range weapon to protect important installations like airfields and cities. This became the "Red Heathen" concept, with a desired range on the order of 100,000 yards (91 km). During a review of
8909-479: The RAE's work by the Defence Research Policy Committee (DRPC) in March 1948, a lack of manpower at the RAE was a serious issue and Seaslug was downgraded in importance in favour of Red Heathen. Around the same time, the Army began to express doubts about the Red Heathen as it became clear that the beam riding guidance systems of the early experimental missiles did not work at long range. They suggested Seaslug might be
9060-478: The RAF's V bomber bases. Australian deployments started in January 1961. Although the Bloodhound was successful technically, Government auditors found that Ferranti had made far larger profits than projected from the Bloodhound I contract. Sir John Lang chaired an inquiry into the matter. Ferranti Chairman, Sebastian de Ferranti, agreed to pay back £4.25 million to the government in 1964. By 1955 it appeared that
9211-665: The Seaslug Mark 1, also known as Guided Weapon System 1, or GWS.1, finally entered service in 1962 on County-class, each fitted with a single twin missile launcher and a complete weapon system with one fire control set and 30 missiles. The Seaslug-armed cruisers were cancelled in 1957. Seaslug needed height, range and bearing information for targets. By 1955 the Royal Navy considered using the Type 984 radar on Seaslug-armed cruisers and destroyers to provide this. During development,
SECTION 60
#17327810711659362-508: The Seaslug Mk 1 was in December 1981 by HMS London , the final GWS1 (or Batch 1) ship in active service. HMS Fife was converted to a training ship, and had her Seaslug systems removed, freeing up large spaces for classrooms and was completed in June 1986. Fife and the remaining GWS2 ships were sold to Chile between 1982 and 1987. Initially, the British government had hoped that
9513-475: The Seaslug missile and guidance system. The project was cancelled in favour of the "Green Cheese" missile , a tactical nuclear anti-ship weapon, but other project developments were incorporated into what became the Mark 2. It had improved low altitude performance and a limited anti-ship capability and entered service in 1971. The Mark 2 utilized an improved beam-riding guidance system. and solid-state electronics. It
9664-539: The Second World War. Company officials claimed, in December 1945, that these domestic initiatives were uninfluenced by parallel German developments. One post-war U.S. intelligence assessment described the Kawasaki ram jet's centrifugal fuel disperser as the company's "most outstanding accomplishment ... eliminat[ing] a large amount of the fuel injection system normally employed." Because of excessive vibration,
9815-567: The Soviet Union, a theory of supersonic ramjet engines was presented in 1928 by Boris Stechkin . Yuri Pobedonostsev, chief of GIRD 's 3rd Brigade, carried out research. The first engine, the GIRD-04, was designed by I.A. Merkulov and tested in April 1933. To simulate supersonic flight, it was fed by air compressed to 200 bar , and was fueled with hydrogen. The GIRD-08 phosphorus-fueled ramjet
9966-458: The Stage 1 design in the 1960s The Stage 1 missile would be based on LOPGAP. The RAE suggested the use of a ramjet for power as it offered better fuel economy . Bristol had only passing experience with this engine design, so they began a long series of tests to develop it. As the ramjet only operates effectively at high speeds over Mach 1 , Bristol built a series of testbed airframes to flight-test
10117-424: The Stage 2 missile, originally known as Green Sparkler but now as Blue Envoy , was too far beyond the state of the art to be able to enter service before the Thunderbird and Bloodhound became obsolete. However, the much improved continuous wave radar systems being developed for the same project were progressing well. In order to address the performance gap due to the delays, interim (or vulgar) Stages were added to
10268-570: The Stage plan. "Stage 1 + 1 ⁄ 2 " combined a slightly upgraded Thunderbird with radar technology from Blue Envoy, while "Stage 1 + 3 ⁄ 4 " would do the same to Bloodhound. In 1957 the entire Stage concept was abandoned as part of the 1957 Defence White Paper . The Paper argued that the Soviets would move their strategic forces to ballistic missiles and that the likelihood of an air attack solely by bombers would be increasingly unlikely. An attack by bombers would simply signal that missiles were also on their way. In this case, defending
10419-574: The States and Empires of the Moon ) (1657) was the first of three satirical novels written by Cyrano de Bergerac that are considered among the first science fiction stories. Arthur C Clarke credited this book with conceiving the ramjet, and as the first fictional example of rocket-powered space flight. The ramjet was designed in 1913 by French inventor René Lorin , who was granted a patent (FR290356) for his device. He could not test his invention due to
10570-442: The US's Nike Hercules in terms of range and performance, but using an advanced continuous-wave semi-active radar homing system, offering excellent performance against electronic countermeasures and low-altitude targets. It also featured a digital computer for fire control that was also used for readiness checks and various calculations. It was a relatively large missile, which limited it to stationary defensive roles similar to
10721-411: The V bombers against air attack did nothing; the only way they could survive would be to launch to holding areas on any suggestion of any sort of attack. In this case, there was no point trying to defend the bomber bases, and Blue Envoy was not needed. Its cancellation caught Bristol by surprise, and their missile division, Bristol Dynamics, had no other projects to fall back on. Bristol engineers sharing
10872-422: The ability to switch between targets in 6 seconds. The designers ultimately selected a maximum range of 30,000 yards, which included 6,000 yd (5.5 km) of coasting after motor burn-out. This was about 50% better than the contemporary US Terrier design. Hit probability was estimated to be 40% at maximum range, so salvos of three missiles would be fired at once, demanding a three-place launcher. This
11023-421: The booster is mounted immediately aft of the ramjet, e.g. Sea Dart , or wraparound where multiple boosters are attached around the outside of the ramjet, e.g. 2K11 Krug . The choice of booster arrangement is usually driven by the size of the launch platform. A tandem booster increases the length of the system, whereas wraparound boosters increase the diameter. Wraparound boosters typically generate higher drag than
11174-496: The booster's higher thrust levels, a differently shaped nozzle is required for optimum thrust compared to that required for the lower thrust ramjet sustainer. This is usually achieved via a separate nozzle, which is ejected after booster burnout. However, designs such as Meteor feature nozzleless boosters. This offers the advantages of elimination of the hazard to launch aircraft from the boost debris, simplicity, reliability, and reduced mass and cost, although this must be traded against
11325-410: The cancellation of a future all-gun cruiser class and ending further conversion of WWII-era destroyers to Type 15 frigates , the new environment meant that air cover by carriers could not be guaranteed, and the need for air defence for task-force sized groups became the primary concern. A cut to carrier construction, capping the fleet at four, released funds for missile ship construction. In October 1954,
11476-457: The compressed air bottle from which it is inflated, which is mounted lengthwise in the tank. This offers a lower-cost approach than a regulated LFRJ requiring a pump system to supply the fuel. A ramjet generates no static thrust and needs a booster to achieve a forward velocity high enough for efficient operation of the intake system. The first ramjet-powered missiles used external boosters, usually solid-propellant rockets, either in tandem, where
11627-555: The design was accepted by the Combined United Kingdom/Australia Committee for Trials. A prototype of the new layout was built and flown in Wales as the 1 ⁄ 4 -scale XTV-1, powered by three 5-inch boosters strapped together. This demonstrated that the overall length with the booster attached would be a significant problem in the field. In response, the original booster was re-designed as
11778-408: The design was further modified and renamed GPV, for General Purpose Test Vehicle. Several liquid rocket motors were tested as part of this program. Early tests demonstrated shifts in the center of gravity that required active damping, which in turn led to the lengthening of the overall fuselage to become the "long round". This version used forward-mounted boosters, which were mounted so their exhaust
11929-433: The designs were completed before it entered service. Guidance was semi-automatic, with the targets initially identified by existing early warning radar sites and then handed off to the Bloodhound sites for local detection and attack. This was handled by the truck-mounted Type 83 "Yellow River" pulse radar system that could be fairly easily jammed and was vulnerable to ground "clutter", thus degrading low-level capability. By
12080-476: The destruction of a number of helicopters and a radar installation. A total of eight Seaslug Mk 2 missiles were launched in theatre by the two ships armed with them, including two missiles jettisoned by Glamorgan after she was hit by a land-launched Exocet missile on 12 June. Also during 1982, the Mk2 was used as a trials target for Seadart, but there were reliability problems with both systems. The last firing of
12231-399: The diameter defined by the missile's wings, so they did not make it any larger in diameter when stored. If one of the boosters did not fire the thrust would be significantly off-axis, a possibility which was later addressed by moving the boosters forward so their exhaust was near the centre of gravity of the missile, allowing the missile's small control surfaces to remain effective. In contrast,
12382-526: The end of the Second World War , UK air defences were run down, on the assumption that it would be at least a decade before another war started. However, the Soviet atomic bomb test of 1949 forced a re-evaluation of that policy, and UK defence planners started studying the problems of building a more integrated air defence network than the patchwork of WWII expediencies. The Cherry Report called for
12533-635: The engine was only intended for use in rocket, or catapult-launched pilotless aircraft. Preparations for flight testing ended with the Japanese surrender in August 1945. In 1936, Hellmuth Walter constructed a test engine powered by natural gas . Theoretical work was carried out at BMW , Junkers , and DFL . In 1941, Eugen Sänger of DFL proposed a ramjet engine with a high combustion chamber temperature. He constructed large ramjet pipes with 500 millimetres (20 in) and 1,000 millimetres (39 in) diameter and carried out combustion tests on lorries and on
12684-501: The engines. The first, JTV-1, resembled a flying torpedo with the ramjets fitted to the end of the cruciform rear fins. Early problems were ironed out and the JTV series was the first British ramjet powered aircraft to operate continually at supersonic speeds. Once the JTV testing started to proceed, Bristol studied a series of airframe designs. The first was a long tube with an intake at the front, and four delta-shaped fins arranged near
12835-414: The final system would be about 19 ft (5.8 m) long and a twin-launcher would take up about the same room as a twin 5.25-inch gun turret. An April Staff Target called for the system to be able to engage an aircraft flying at 500 mph (800 km/h) at altitudes up to 40,000 ft (12,000 m) with a maximum weight of 500 lb (230 kg). In 1945 a new Guided Projectiles Establishment
12986-406: The firing. For both Mark 1 and Mark 2 Sea Slug there were drill rounds (painted blue) for the purpose of training and display rounds (painted red) which could be loaded onto the launcher for port visits and public relations. In addition, a nuclear-armed variant was planned using a low-yield fission warhead code-named Winkle . Winkle was never built as it was quickly supplanted by Pixie ,
13137-427: The flame and improve fuel mixing. Over-fuelling the combustor can cause the final (normal) shock in the diffuser to be pushed forward beyond the intake lip, resulting in a substantial drop in airflow and thrust. The propelling nozzle is a critical part of a ramjet design, since it accelerates exhaust flow to produce thrust. Subsonic ramjets accelerate exhaust flow with a nozzle . Supersonic flight typically requires
13288-447: The flameout. The missile was made fully controllable about ten seconds after firing, followed by a radio-beacon while it was centered in the radar beam; and armed the infra-red proximity fuze at about 1 km (1,100 yd) from the target, if 'hot', while if 'cold' the missile was detonated by command sent from the ship. The range could be even more than 35,000 yards, especially at high altitude, with head-on supersonic targets. One of
13439-528: The front of the fuselage. The intake and wings give it some resemblance to the English Electric Lightning , albeit with a long tube sticking out of the aft end. This arrangement left little internal room for fuel or guidance, as the tube ran down the centre of the entire fuselage. A second design was similar, but used mid-mounted fins of reverse-delta shape (flat at the front) with small intakes at their roots. The performance of these intakes
13590-418: The fuel to the ramcombustor is required, which can be complicated and expensive. This propulsion system was first perfected by Yvonne Brill during her work at Marquardt Corporation . Aérospatiale-Celerg designed an LFRJ where the fuel is forced into the injectors by an elastomer bladder that inflates progressively along the length of the fuel tank. Initially, the bladder forms a close-fitting sheath around
13741-516: The fuselage was stretched to allow more fuel storage. These changes dramatically extended range from about 35 to 80 kilometres (22 to 50 mi), pushing the practical engagement distance out to about 50 kilometres (31 mi) (although detected at a longer range, the missile takes time to travel to its target, during which the target approaches the base). The Mk. II was guided by either the Ferranti Type 86 "Firelight" radar for mobile use, or
13892-402: The ground, since the missile did not broadcast any signals of its own. To solve this problem, the radar site also broadcast an omnidirectional reference signal that was shifted to the frequency that the missile's receiver should be looking for, taking into account both the target and missile speed. Thus the missile only had to compare the signal from its nose-mounted receiver with the signal from
14043-425: The incoming air is slowed to subsonic velocities for combustion. In addition, the combustion chamber's inlet temperature increases to very high values, approaching the dissociation limit at some limiting Mach number. Ramjet diffusers slow the incoming air to a subsonic velocity before it enters the combustor. Scramjets are similar to ramjets, but the air flows through the combustor at supersonic speed. This increases
14194-493: The larger fixed-emplacement Marconi Type 87 "Scorpion". In addition to its own illumination and tracking antennas, the Scorpion also added one of the receiver antennas out of a Bloodhound missile body onto the same antenna framework. This antenna was used to determine what the missile's own receiver was seeing, which was used for jamming detection and assessment. The new radars eliminated problems with ground reflections, allowing
14345-409: The late stages of World War II, the British armed forces began the development of surface-to-air missiles (SAMs), or as they became known in the UK, surface-to-air guided weapons (SAGW). The Royal Navy was primarily interested in weapons to counteract Luftwaffe bombers dropping glide bombs , which had been used with great effectiveness during the invasion of Italy , and looking toward countering
14496-419: The launch site, greatly simplifying the electronics. Many of the calculations of lead, frequency shifting, and pointing angles for the radars were handled by the custom-built Ferranti Argus computer. This machine would later go on to be a successful industrial control computer which was sold all over Europe for a wide variety of roles. The Mk. II started tests in 1963 and entered RAF service in 1964. Unlike
14647-493: The longest shots recorded was made by HMS Antrim against a target over 58,000 yd (33 mi; 53 km) away, with an impact at 34.500 with about 46 seconds flight time. The missile was capable of reaching potentially even higher altitude and longer range than nominally attested: even after the engine flameout (over 40 seconds after launch), it retained very high speeds and one of them even surpassed 85,000 ft (26,000 m) before self-destructing, about one minute after
14798-415: The main motor ignited to power the missile to the target. The booster motors were positioned at the side of the missile, but this unusual arrangement with the motor nozzles both angled outwards at 22.5° and 22.5° to the left, the missile entered a gentle roll at launch, evening out differences in the thrusts of the boosters. This meant that large stabilising fins as used on contemporary missiles in service with
14949-465: The missile to be fired at any visible target, no matter how close to the ground. Combined with the new engines, the Mk. II had an extended altitude performance between 150 and 65,000 feet (46 and 19,812 m). The use of a CW radar presented a problem for the semi-automatic guidance system. Continuous wave radar systems rely on the Doppler effect to detect moving targets, comparing returned signals to
15100-664: The more capable Mk 2 version. A proposal to refit the Batch 1 ships with ADAWS was dropped in 1968. During the Falklands War Seaslug was only launched once against an aircraft target, by HMS Antrim , and without success. On 21 May 1982 in Falkland Sound , the Antrim which had already had an unexploded 1,000 lb bomb pass through the Seaslug magazine, fired a single missile (some sources say two ) at one of
15251-479: The name came from a comparison with the turbojet engine which employs relatively complex and expensive spinning turbomachinery. The US Navy developed a series of air-to-air missiles under the name of " Gorgon " using different propulsion mechanisms, including ramjet propulsion on the Gorgon IV. The ramjet Gorgon IVs, made by Glenn Martin , were tested in 1948 and 1949 at Naval Air Station Point Mugu . The ramjet
15402-475: The neutron flux emitted by the warhead. This would have been a mobile version of Bloodhound. Ramjet A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach 3 (2,300 mph; 3,700 km/h) and can operate up to Mach 6 (4,600 mph; 7,400 km/h). Ramjets can be particularly appropriate in uses requiring
15553-413: The now-lit ramjets, the boosters slide rearward until the front hook disengages from the missile body. The boosters are then free to rotate around their attachment to the metal ring, and are designed to rotate outward, away from the fuselage. In action, they fold open like the petals on a flower, greatly increasing drag and pulling the entire four-booster assembly away from the missile body. Small inlets on
15704-512: The pressure recovered from the streaming air and improves net thrust. Thermal choking of the exhaust is avoided by having a relatively high supersonic air velocity at combustor entry. Fuel injection is often into a sheltered region below a step in the combustor wall. The Boeing X-43 was a small experimental ramjet that achieved Mach 5 (1,700 m/s; 6,100 km/h) for 200 seconds on the X-51A Waverider . LOPGAP Seaslug
15855-500: The previous Mk 1. The boosters gave a total of about 60 tons-force, with 186 kg (410 lb) fuel for each one (145 kg in the Mk 1), accelerating it to over Mach 2. When they separated because the extreme drag made by the rings all around the missile, the solid fuel sustainer Deerhound started to burn its 440 kg (970 lb) of propellant (390 kg for the Mk 1) and gave about 1,820 kg/s (241,000 lb/min) for 38 seconds. The slender missile remained at over Mach 2-2.5 until
16006-519: The projected weight of the radar doubled, to the point where it could still potentially be mounted on cruisers, but was rejected for destroyers because it would have meant sacrificing their 4.5 in gun armament. The gun armament was regarded as essential for the navy's wider role outside the hot war mission. The solution adopted with the first batch of the County-class destroyers was to network them with ships carrying Type 984. The destroyers were given
16157-413: The radar signal being broadcast, and looking for any shift in frequency. However, in the Bloodhound's case the missile was moving away from the reference signal as fast, or faster, than the target would be approaching it. The missile would need to know the velocity of the target as well as its own airspeed in order to know what frequency to look for. But this information was known only to the radar station on
16308-411: The ram jets. Two smaller rectangular fixed surfaces were mounted in-line with the main wings, almost at the rear of the missile. The boost engines are held together as a single assembly by a metal ring at the rear of the missile. Each motor has a small hook on the ring as well as similar one at the front holding it to the missile body. After firing, when the thrust of the rockets falls below the thrust of
16459-437: The reduction in performance of a dedicated booster nozzle. A slight variation on the ramjet uses the supersonic exhaust from a rocket combustion process to compress and react with the incoming air in the main combustion chamber. This has the advantage of giving thrust even at zero speed. In a solid fuel integrated rocket ramjet (SFIRR), the solid fuel is cast along the outer wall of the ramcombustor. In this case, fuel injection
16610-430: The relatively low pressure means the ramjets are outperformed by turbojets and rockets . Ramjets can be classified according to the type of fuel, either liquid or solid; and the booster. In a liquid fuel ramjet (LFRJ), hydrocarbon fuel (typically) is injected into the combustor ahead of a flameholder. The flameholder stabilises the flame with the compressed air from the intake(s). A means of pressurizing and supplying
16761-435: The roots of the stub wings holding the engines allow air into the missile body for two tasks. Two ram air turbines driving turbopumps generate hydraulic power for the wing control system, and a fuel pump that feeds the engines. Smaller inlet tubes provide ram air to pressurise the fuel tanks. Kerosene fuel is held in two large rubber bag tanks in bays either side of the wing bay where the wings are attached. Electrical power
16912-441: The same basic requirement. Ferranti was brought on to begin development of the new radars and guidance systems. Before long, the two Red Heathen entries began to diverge, and the two designs were given their own rainbow codes; EE's design became "Red Shoes", and Bristol's became "Red Duster". Bristol's efforts were fairly similar to EE's in most ways, although it was somewhat less mobile while offering somewhat better range. After
17063-539: The same engines as the AQM-60, but with improved materials to endure longer flight times. The system was withdrawn in the 1970s as the threat from bombers subsided. In April 2020, the U.S. Department of Defense and the Norwegian Ministry of Defense jointly announced their partnership to develop advanced technologies applicable to long range high-speed and hypersonic weapons. The Tactical High-speed Offensive Ramjet for Extended Range (THOR-ER) program completed
17214-531: The shorter-range role of the Thunderbird was replaced by the much smaller and fast-acting BAC Rapier starting in 1971. Bloodhound's longer range kept it in service until the threat of bomber attack by the Soviet Union was deemed to have disappeared with the dissolution of the union in 1991. The last Mk. II missile squadron stood down in July 1991, although Swiss examples remained operational until 1999. During
17365-1081: The simplicity of the SFRJ and LFRJ's unlimited speed control. Ramjets generally give little or no thrust below about half the speed of sound , and they are inefficient ( specific impulse of less than 600 seconds) until the airspeed exceeds 1,000 kilometres per hour (280 m/s; 620 mph) due to low compression ratios. Even above the minimum speed, a wide flight envelope (range of flight conditions), such as low to high speeds and low to high altitudes, can force significant design compromises, and they tend to work best optimised for one designed speed and altitude (point designs). However, ramjets generally outperform gas turbine-based jet engine designs and work best at supersonic speeds (Mach 2–4). Although inefficient at slower speeds, they are more fuel-efficient than rockets over their entire useful working range up to at least Mach 6 (2,000 m/s; 7,400 km/h). The performance of conventional ramjets falls off above Mach 6 due to dissociation and pressure loss caused by shock as
17516-554: The system was cancelled. It was replaced by a shorter range ramjet missile system called the Bloodhound . The system was designed as a second line of defense in case attackers were able to bypass the fleet of defending English Electric Lightning fighters. In the 1960s the Royal Navy developed and deployed a ramjet powered surface to air missile for ships called the Sea Dart . It had a range of 65–130 kilometres (40–80 mi) and
17667-426: The tail mounted in-line with symmetric wings mounted near the fuselage midpoint. The control surfaces tilt the missile relative to its direction of travel, causing the wings to become non-symmetrical relative the airflow, generating lift that turns the missile. Bristol was concerned that the angles needed to generate the required lift using this method would be too great for the engines intakes to deal with, so it adopted
17818-426: The tilting of the fuselage across the relative wind. The long, thin fuselage offered very low rotational inertia, conferring excellent homing performance in the last few seconds. The engines were mounted above and below these wings on short extensions. In the initial designs, a single very large solid fuel booster launched the missile off its launcher and powered it to speeds where the ramjets could take over. In 1952
17969-659: The time Bloodhound was ready for deployment, the solid-fuelled Red Shoes, now known as the English Electric Thunderbird , was proving successful and the British Army dropped its orders for the Bloodhound in favour of the Thunderbird. The Bloodhound Mk 1 entered British service in 1958, and was selected for the Royal Australian Air Force (RAAF) in November of that year. Deployment of the Bloodhound Mk. I began in 1958, initially to provide protection for
18120-410: The twist and steer system, first experimented with on the war-era Brakemine project. In this system the four cropped-delta surfaces at the tail were fixed and used only for stability, not control. Directional control was provided though two large mid-mounted wings which could be rotated independently to large angles. The guidance system rotated the wings in opposite directions to roll the missile until
18271-428: The unavailability of adequate equipment since there was no way at the time for an aircraft to go fast enough for a ramjet to function properly. His patent showed a piston internal combustion engine with added 'trumpets' as exhaust nozzles, expressing the idea that the exhaust from internal combustion engines could be directed into nozzles to create jet propulsion. The works of René Leduc were notable. Leduc's Model,
18422-405: The wings were perpendicular to the target, and then rotated them in the same direction to provide lift in the required direction. This meant that the wings could be rotated to the angles required to generate large amounts of lift, without rotating the missile body itself. This kept airflow in the direction of the missile body, and thus the engine intakes, as well as greatly reducing the drag caused by
18573-544: Was a 17 kn (31 km/h) vessel that would provide direct cover over seagoing convoys, while the 12 kn (22 km/h) Coastal Convoy Escort would do the same closer to shore. At that time it was believed that aircraft carriers would be able to provide adequate cover over convoys or fleets in the ocean, so attention turned to the Coastal Convoy Escort. Beginning in May 1953 a Beachy Head-class repair ship
18724-401: Was a Mark II with 6 kiloton nuclear warhead and a range of around 125 mi (201 km) achieved with an improved ramjet engine and bigger boosters. The project, one of several adaptations of existing British missiles to carry tactical nuclear devices, was cancelled in 1960. There is evidence that the intention was to "poison" the warheads of nuclear weapons carried by an attacking force via
18875-642: Was a nuclear warhead-equipped Mk. II with a longer range – around 75 miles (121 km) – achieved with improved ramjet engine and larger boosters. This was also to be the interceptor for the Violet Friend anti-ballistic missile system, which added a radio control link to allow the missile to be guided into the rough interception area while the enemy warhead was still too far away for the Type 86 radar to pick up. The project, one of several adaptations of existing British missiles to carry tactical nuclear devices,
19026-425: Was a small unpowered Brakemine-like system devoted to the development of the guidance systems, launched using three RP-3 rocket motors and controlled through the coast phase. A series of CTV designs followed, providing ever-increasing amounts of telemetry for the guidance and control systems work. GAP became a purely research-oriented system, RTV.1 (rocket test vehicle), as opposed to a prototype missile design, and
19177-502: Was briefly known as LOPGAP, short for "Liquid Oxygen and Petrol Guided Anti-aircraft Projectile", but soon moved from petrol to methanol which made the "LOP" inaccurate. The Fairey Aviation Company was at this time working on a missile project for the Ministry of Supply, Stooge . Stooge was more like an armed drone aircraft than a missile. It was flown to a location in front of the target and then cruised toward it until its warhead
19328-489: Was cancelled in 1960. The Mk. IV was a cancelled mobile version, based on Swedish Army field experience. The main missile is a long cylinder of magnesium frames and aluminium alloy skin with a prominent ogive nose cone at the front and some boat-tailing at the rear. Small aluminium-covered wooden cropped-delta wings are mounted midpoint, providing pitch and roll control by pivoting in unison or independently with additional steering provided by differential fuel feed to each of
19479-507: Was converted into a prototype escort ship, HMS Girdle Ness , to test this fitting. For this role, the densest possible storage was required, so the initial design of a single booster rocket at the base end of the missile. This led to a very long design, as was the case for most contemporary designs, this was abandoned in favour of four smaller boosters wrapped around the fuselage, giving shorter overall length of about 20 ft (6.1 m). The boosters were positioned so they lay within
19630-689: Was designed at the University of Southern California and manufactured by the Marquardt Aircraft Company . The engine was 2.1 metres (7 ft) long and 510 millimetres (20 in) in diameter and was positioned below the missile. In the early 1950s the US developed a Mach 4+ ramjet under the Lockheed X-7 program. This was developed into the Lockheed AQM-60 Kingfisher . Further development resulted in
19781-424: Was ever deployed. The County-class destroyers were specifically built to carry Seaslug and its associated control equipment. The magazine was positioned amidships and missiles were assembled in a central gallery forward of the magazine before being passed to the launcher on the quarterdeck. The handling arrangements were designed with a nuclear-war environment in mind and were therefore entirely under cover. Some of
19932-591: Was fired from RAF Aberporth out over Cardigan Bay in Wales. The desire to reclaim the RTVs as well led to the opening of a parallel launch facility at the RAAF Woomera Range Complex and a program that led development of supersonic parachutes. As RTV testing continued, the decision was made to build a larger version, RTV.2, which would be more typical of a production missile. During early testing,
20083-448: Was held. The Admiralty Signals Establishment (ASE), in charge of the Navy's radar development, was working on new radars featuring radar lock-on that allowed them to accurately track aircraft at long range. This was part of the LRS.1 fire-control system that allowed large dual-purpose guns to attack bombers at long range. A contemporary British Army project at Cossors, Brakemine ,
20234-431: Was highly automated and allowed the missile to fly directly at its targets at high speed in any conditions, day or night. Looking to the future, the Navy saw a need to counter jet-powered aircraft, demanding a much higher-performance system. In 1944, the Navy formed the "Guided Anti-Aircraft Projectile Committee", or GAP Committee, to consider such a design. The GAP team suggested combining the Navy's new Type 909 radar with
20385-541: Was intended to engage high-flying targets such as reconnaissance aircraft or bombers before they could launch stand-off weapons. It was only fitted to the Royal Navy's eight County-class destroyers which were designed around the missile system. Seaslug was only fired in anger once as an anti-aircraft missile, from HMS Antrim during the Falklands War, but missed its target. Later improvements meant that it could also be used against ships and ground targets. It
20536-479: Was just in front of the mid-mounted wings. As experimental work progressed, the Ministry of Supply began forming an industry team to build production systems. In 1949 this gave rise to the 'Project 502' group from industry, with Armstrong Whitworth Aircraft and Sperry in March and GEC in September. The 29 July 1949 update of the Staff Target called for a maximum range of 30,000 yd (27 km) and
20687-400: Was later reduced back to a twin-launcher when it was realized accessing the missile in the middle launcher would make maintenance difficult. When the deployment of the Seaslug was first being considered, three classes of custom missile-firing ships were considered. The Task Force Ship would be capable of 30 kn (56 km/h) and would tasked with fleet air defence. The Ocean Convoy Escort
20838-441: Was not enough manpower for all four projects, and put Seaslug at the bottom of the priority list, claiming air attack would be less likely than submarine in the event of war. They suggested the much longer ranged Red Heathen was more important in the short term. The Admiralty was of another opinion on the matter and argued against the change in priority. The Navy found an unlikely ally in the Army, who were concerned that Red Heathen
20989-475: Was not well understood, and considered risky. The final design was essentially a small aircraft, with mid-set trapezoidal wings and four small swept wing fins at the extreme rear. In this version, two engines were mounted on the wing tips, similar to the mounting used on the JTV series and thus better understood. One unique feature of the new design was the aerodynamic control system known as "twist and steer". Typical large missile designs use control surfaces at
21140-520: Was planned that Seaslug's medium-range role was to be supplanted by a very long-range missile known as Blue Envoy , but this was passed over in favour of a new medium-range system, Sea Dart . Sea Dart entered service in 1973 on the Type 82 destroyers and replaced Seaslug during the 1980s as the County-class destroyers were removed from service. In 1943, the German Luftwaffe began the use of anti-shipping missiles and guided bombs in
21291-497: Was powered by the Deerhound sustainer motor, with Retriever boosters. Control was by a modified Type 901M radar and it had an improved infra-red proximity fuze and a continuous-rod warhead with a smaller, 56 lb (25 kg), explosive charge (RDX-TNT) and an unfold diameter of about 70 feet (10 mm steel rods were used) The capabilities of the new Sea Slug Mk 2, an almost 2.5 ton missile, were much improved compared to
21442-462: Was provided by a molten salt battery . At room temperature, this would be inert and suitable for long-term storage without degradation, but was heated to its working temperature by a pyrotechnic heat source ignited at launch. Although in tests the Bloodhound had executed direct hits on target bombers flying at 50,000 feet (15,000 m), Mark II production models, in common with many air-to-air and surface-to-air missiles of that period and after, had
21593-641: Was set up under the Controller of Supplies (Air) and in 1946 development of all ongoing missile projects moved to the Royal Aircraft Establishment 's (RAE) new Controlled Weapons Department, soon to become the Guided Weapons Department. They began considering the beam riding concept in partnership with the Telecommunications Research Establishment (TRE), the deliberately oddly-named department of
21744-462: Was significantly hampered by the post-war exodus of engineering talent. Shortly after the new definition was produced, this project also moved to the RAE. Efforts by the Navy to change the name from Seaslug to the more ominous-sounding "Triumph" failed. Development slowed, and in July 1947 the Admiralty approached Henry Tizard to argue for a more "virile leadership" of the program. Tizard called
21895-454: Was slowed by the Air Ministry who were opposed to the project as it might take resources away from jet fighter production and a lack of urgency on the part of both the Admiralty and Ministry of Supply . A March 1945 report called for the first test launches of LOPGAP from converted QF 3.7-inch air-aircraft gun mounts within two months. The same mounts had also been used, with different modifications, for Stooge and Brakemine. They predicted
22046-520: Was tested by firing it from an artillery cannon. These shells may have been the first jet-powered projectiles to break the speed of sound . In 1939, Merkulov did further ramjet tests using a two-stage rocket , the R-3. He developed the first ramjet engine for use as an auxiliary motor of an aircraft, the DM-1. The world's first ramjet-powered airplane flight took place in December 1940, using two DM-2 engines on
22197-442: Was too difficult to move to in a single step and suggested that Seaslug might be the basis for a more immediate medium-range weapon that could be used both on land and sea. The DPRC also began to have concerns about accurately guiding Red Heathen at its desired 100,000 yd (91 km) maximum range. In September 1948 they agreed to develop Seaslug "as a matter of insurance", before further upgrading it in 1949 to "top priority". As
22348-411: Was triggered by the operator. It was designed primarily to defeat kamikaze attacks at short range. Its low speed and manual guidance meant it was not useful for interceptions outside the immediate area of the ship, and thus did not meet the need for a longer-ranged missile capable of dealing with stand-off weapons. Accordingly, Fairey was ordered to stop work on Stooge in favour of LOPGAP. Development
22499-511: Was ultimately cancelled in 1957, parts of its design were worked into Bloodhound Mk. II, roughly doubling the range of the missile. The Mk. I began to be replaced by the Mk. II starting in 1964. Mk. II performance was such that it was also selected as the interceptor missile in the Violet Friend ABM system, although this was ultimately cancelled. The Bloodhound Mk. II was a relatively advanced missile for its era, roughly comparable to
22650-546: Was used primarily as a platform for testing the rocket motors. The GAP/RTV.1 efforts would be directed at the Stage 1 design, which would essentially be the Seaslug requirement. The relatively small CTV could safely be launched at the Larkhill Range, part of the Royal School of Artillery . It was equipped with a parachute that allowed it to be recovered. This was not possible for the much longer-ranged RTV, which
22801-562: Was working on a system to allow a missile to keep itself centred within a radar beam, a concept known today as beam riding . The Navy decided to combine the two concepts, using the LRS.1's Type 909 radar with a new missile that differed from Brakemine primarily in requiring longer range and being more robust for shipborne use. In December 1944, GAP put out a Naval Staff Target for a new anti-aircraft weapon, capable of attacking targets at altitudes up to 50,000 ft (15,000 m) and speeds of up to 700 mph (1,100 km/h). This project
#164835