Misplaced Pages

Gondwana

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geology , a supercontinent is the assembly of most or all of Earth 's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

#358641

118-469: Gondwana ( / ɡ ɒ n d ˈ w ɑː n ə / ) was a large landmass, sometimes referred to as a supercontinent . The remnants of Gondwana make up around two-thirds of today's continental area, including South America , Africa , Antarctica , Australia , Zealandia , Arabia , and the Indian Subcontinent . Gondwana was formed by the accretion of several cratons (large stable blocks of

236-538: A preservation bias . During the late Ordovician (~458.4 Ma), the particular configuration of Gondwana may have allowed for glaciation and high CO 2 levels to occur at the same time. However, some geologists disagree and think that there was a temperature increase at this time. This increase may have been strongly influenced by the movement of Gondwana across the South Pole, which may have prevented lengthy snow accumulation. Although late Ordovician temperatures at

354-642: A complex series of orogenic events assembled the eastern parts of Gondwana (eastern Africa, Arabian-Nubian Shield, Seychelles, Madagascar, India, Sri Lanka, East Antarctica, and Australia) c. 750 to 530 Ma . First, the Arabian-Nubian Shield collided with eastern Africa (in the Kenya-Tanzania region) in the East African Orogeny c. 750 to 620 Ma . Then Australia and East Antarctica were merged with

472-598: A continuous arc chain, the direction of subduction was different between the Australian-Tasmanian and New Zealand-Antarctica arc segments. Many terranes were accreted to Eurasia during Gondwana's existence, but the Cambrian or Precambrian origin of many of these terranes remains uncertain. For example, some Palaeozoic terranes and microcontinents that now make up Central Asia, often called the "Kazakh" and "Mongolian terranes", were progressively amalgamated into

590-746: A diversified assemblage of true insects. In Gondwana, in contrast, ice and, in Australia, volcanism decimated the Devonian flora to a low-diversity seed fern flora – the pteridophytes were increasingly replaced by the gymnosperms which were to dominate until the Mid-Cretaceous. Australia, however, was still located near the Equator during the Early Carboniferous, and during this period, temnospondyl and lepospondyl amphibians and

708-471: A few million years, reached its peak at c. 200 Ma , and coincided with the Triassic–Jurassic extinction event . The reformed Gondwanan continent was not precisely the same as that which had existed before Pangaea formed; for example, most of Florida and southern Georgia and Alabama is underlain by rocks that were originally part of Gondwana, but this region stayed attached to North America when

826-593: A gradual decline during the Triassic while ferns, though never dominant, managed to diversify. The brief period of icehouse conditions during the Triassic–Jurassic extinction event had a dramatic impact on dinosaurs but left plants largely unaffected. The Jurassic was mostly one of hot-house conditions and, while vertebrates managed to diversify in this environment, plants have left little evidence of such development, apart from Cheiroleidiacean conifers and Caytoniales and other groups of seed ferns. In terms of biomass,

944-550: A low number of passive margins during 336 to 275 Ma, and its break-up is indicated accurately by an increase in passive margins. Orogenic belts can form during the assembly of continents and supercontinents. The orogenic belts present on continental blocks are classified into three different categories and have implications for interpreting geologic bodies. Intercratonic orogenic belts are characteristic of ocean basin closure. Clear indicators of intracratonic activity contain ophiolites and other oceanic materials that are present in

1062-515: A north-east motion about 90 million years ago. While subduction direction changed, it remained oblique (and not perpendicular) to the coast of South America, and the direction change affected several subduction zone -parallel faults including Atacama , Domeyko and Liquiñe-Ofqui . Insular India began to collide with Asia circa 70 Ma , forming the Indian subcontinent , since which more than 1,400 km (870 mi) of crust has been absorbed by

1180-639: A number of species related to those of the laurissilva of Valdivia, through the connection of the Antarctic flora . These include gymnosperms and the deciduous species of Nothofagus , as well as the New Zealand laurel, Corynocarpus laevigatus , and Laurelia novae-zelandiae . New Caledonia and New Zealand became separated from Australia by continental drift 85 million years ago. The islands still retain plants that originated in Gondwana and spread to

1298-543: A pattern that reflects the Jurassic break-up of Pangaea. The Cretaceous saw the arrival of the angiosperms , or flowering plants, a group that probably evolved in western Gondwana (South America–Africa). From there the angiosperms diversified in two stages: the monocots and magnoliids evolved in the Early Cretaceous, followed by the hammamelid dicots . By the Mid-Cretaceous, angiosperms constituted half of

SECTION 10

#1732773082359

1416-521: A peak in biodiversity – the end-Permian extinction was enormous and so was the radiation that followed. Two families of conifers, Podocarpaceae and Araucariaceae , dominated Gondwana in the Early Triassic, but Dicroidium , an extinct genus of fork-leaved seed ferns, dominated woodlands and forests of Gondwana during most of the Triassic. Conifers evolved and radiated during the period, with six of eight extant families already present before

1534-667: A result of data sets compiled on behalf of oil and mining companies: the East African Orogeny ( 650 to 800 Ma ) and Kuunga orogeny (including the Malagasy Orogeny in southern Madagascar) ( 550 Ma ), the collision between East Gondwana and East Africa in two steps, and the Brasiliano orogeny ( 660 to 530 Ma ), the successive collision between South American and African cratons . The last stages of Gondwanan assembly overlapped with

1652-853: A series of events severally restricted the Proto-ACC: change to shallow marine conditions along the North Scotia Ridge; closure of the Fuegan Seaway, the deep sea that existed in Tierra del Fuego; and uplift of the Patagonian Cordillera. This, together with the reactivated Iceland plume , contributed to global warming. During the Miocene, the Drake Passage began to widen, and as water flow between South America and

1770-693: A single jaw from Australia. The closure of the Rheic Ocean and the formation of Pangaea in the Carboniferous resulted in the rerouting of ocean currents that initiated an Ice House period. As Gondwana began to rotate clockwise, Australia shifted south to more temperate latitudes. An ice cap initially covered most of southern Africa and South America but spread to eventually cover most of the supercontinent, save for northernmost Africa-South America and eastern Australia. Giant lycopod and horsetail forests continued to evolve in tropical Laurasia together with

1888-578: A single lava flow is also undetermined. These are important factors on how flood basalts influenced paleoclimate . Global palaeogeography and plate interactions as far back as Pangaea are relatively well understood today. However, the evidence becomes more sparse further back in geologic history. Marine magnetic anomalies, passive margin match-ups, geologic interpretation of orogenic belts , paleomagnetism, paleobiogeography of fossils, and distribution of climatically sensitive strata are all methods to obtain evidence for continent locality and indicators of

2006-401: A slab of the subducted crust is denser than the surrounding mantle, it sinks to discontinuity. Once the slabs build up, they will sink through to the lower mantle in what is known as a "slab avalanche". This displacement at the discontinuity will cause the lower mantle to compensate and rise elsewhere. The rising mantle can form a plume or superplume. Besides having compositional effects on

2124-529: A supercontinent would have to show intracratonic orogenic belts. However, interpretation of orogenic belts can be difficult. The collision of Gondwana and Laurasia occurred in the late Palaeozoic. By this collision, the Variscan mountain range was created, along the equator. This 6000-km-long mountain range is usually referred to in two parts: the Hercynian mountain range of the late Carboniferous makes up

2242-647: Is almost as simple as fitting together the present continents bordering the Atlantic ocean like puzzle pieces. For the period before Pangaea, there are two contrasting models for supercontinent evolution through geological time . The first model theorizes that at least two separate supercontinents existed comprising Vaalbara and Kenorland , with Kenorland comprising Superia and Sclavia . These parts of Neoarchean age broke off at ~2480 and 2312 Ma , and portions of them later collided to form Nuna (Northern Europe and North America). Nuna continued to develop during

2360-560: Is also commonly called Gondwanaland . Regions that were part of Gondwana shared floral and zoological elements that persist to the present day. The continent of Gondwana was named by the Austrian scientist Eduard Suess , after the region in central India of the same name , which is derived from Sanskrit for "forest of the Gonds ". The name had been previously used in a geological context, first by H. B. Medlicott in 1872, from which

2478-569: Is an association between the rifting and breakup of continents and supercontinents and glacial epochs. According to the model for Precambrian supercontinent series, the breakup of Kenorland and Rodinia was associated with the Paleoproterozoic and Neoproterozoic glacial epochs, respectively. In contrast, the Protopangea–Paleopangea theory shows that these glaciations correlated with periods of low continental velocity, and it

SECTION 20

#1732773082359

2596-503: Is based on both palaeomagnetic and geological evidence and proposes that the continental crust comprised a single supercontinent from ~2.72 Ga until break-up during the Ediacaran period after ~0.573 Ga . The reconstruction is derived from the observation that palaeomagnetic poles converge to quasi-static positions for long intervals between ~2.72–2.115 Ga; 1.35–1.13 Ga; and 0.75–0.573 Ga with only small peripheral modifications to

2714-448: Is concluded that a fall in tectonic and corresponding volcanic activity was responsible for these intervals of global frigidity. During the accumulation of supercontinents with times of regional uplift, glacial epochs seem to be rare with little supporting evidence. However, the lack of evidence does not allow for the conclusion that glacial epochs are not associated with the collisional assembly of supercontinents. This could just represent

2832-546: Is evidence for a large orographic barrier within the interior of Pangaea during the late Paleozoic (~251.9 Ma). The possibility of the southwest–northeast trending Appalachian-Hercynian Mountains makes the region's monsoonal circulations potentially relatable to present-day monsoonal circulations surrounding the Tibetan Plateau, which is known to positively influence the magnitude of monsoonal periods within Eurasia. It

2950-817: Is now the Transantarctic Mountains ): the Antarctic Peninsula , Marie Byrd Land , Zealandia , and Thurston Island ; the Falkland Islands and Ellsworth–Whitmore Mountains (in Antarctica) were rotated 90° in opposite directions; and South America south of the Gastre Fault (often referred to as Patagonia ) was pushed westward. The history of the Africa-Antarctica break-up can be studied in great detail in

3068-575: Is now the southern Weddell Sea where initial break-up occurred during the Jurassic c. 180 to 160 Ma . Gondwana began to break up in the early Jurassic following the extensive and fast emplacement of the Karoo-Ferrar flood basalts c. 184 Ma . Before the Karoo plume initiated rifting between Africa and Antarctica , it separated a series of smaller continental blocks from Gondwana's southern, Proto-Pacific margin (along what

3186-538: Is presumed to have been linked to the subduction of cold oceanic lithosphere . During the mid to Late Cretaceous ( c.  90 million years ago ), the Andean orogeny changed significantly in character. Warmer and younger oceanic lithosphere is believed to have started to be subducted beneath South America around this time. Such kind of subduction is held responsible not only for the intense contractional deformation that different lithologies were subject to, but also

3304-477: Is seen today in Eurasia , and rock record shows evidence of continentality in the middle of Pangaea. The term glacial-epoch refers to a long episode of glaciation on Earth over millions of years. Glaciers have major implications on the climate, particularly through sea level change . Changes in the position and elevation of the continents, the paleolatitude and ocean circulation affect the glacial epochs. There

3422-566: Is the Ediacaran to Cambrian orogeny that resulted as India collided with the already amalgamated African continent that consisted of Azania and the Congo-Tanzania-Bangweulu Block. The orogeny affected the parts of the East African Orogen that are now found in southern India, Madagascar and central Arabia . The term "Malagasy orogeny" was introduced by Collins & Pisarevsky 2005 for

3540-477: Is the fifth oxygenation stage. One of the reasons indicating this period to be an oxygenation event is the increase in redox -sensitive molybdenum in black shales . The sixth event occurred between 360 and 260 Ma and was identified by models suggesting shifts in the balance of S in sulfates and C in carbonates , which were strongly influenced by an increase in atmospheric oxygen. Granites and detrital zircons have notably similar and episodic appearances in

3658-439: Is the opening and closing of an individual oceanic basin . The Wilson cycle rarely synchronizes with the timing of a supercontinent cycle. However, supercontinent cycles and Wilson cycles were both involved in the creation of Pangaea and Rodinia. Secular trends such as carbonatites , granulites , eclogites , and greenstone belt deformation events are all possible indicators of Precambrian supercontinent cyclicity, although

Gondwana - Misplaced Pages Continue

3776-466: Is therefore somewhat expected that lower topography in other regions of the supercontinent during the Jurassic would negatively influence precipitation variations. The breakup of supercontinents may have affected local precipitation. When any supercontinent breaks up, there will be an increase in precipitation runoff over the surface of the continental landmasses, increasing silicate weathering and

3894-504: Is thought that the Earth's oxygen content has risen in stages: six or seven steps that are timed very closely to the development of Earth's supercontinents. The process of Earth's increase in atmospheric oxygen content is theorized to have started with the continent-continent collision of huge landmasses forming supercontinents, and therefore possibly supercontinent mountain ranges (super-mountains). These super-mountains would have eroded, and

4012-474: Is thought to have been approximately 10 degrees Celsius warmer along 90 degrees East paleolongitude compared to the present temperature of today's central Eurasia. Many studies of the Milankovitch cycles during supercontinent time periods have focused on the mid-Cretaceous. Present amplitudes of Milankovitch cycles over present-day Eurasia may be mirrored in both the southern and northern hemispheres of

4130-785: The Antarctic Peninsula increased, the renewed ACC resulted in cooler global climate. Since the Eocene, the northward movement of the Australian Plate has resulted in an arc-continent collision with the Philippine and Caroline plates and the uplift of the New Guinea Highlands . From the Oligocene to the late Miocene, the climate in Australia, dominated by warm and humid rainforests before this collision, began to alternate between open forest and rainforest before

4248-885: The Antongil Block in far eastern Madagascar, the Seychelles , and the Napier and Rayner Complexes in East Antarctica ). The Azania continent (much of central Madagascar , the Horn of Africa and parts of Yemen and Arabia) was an island in the Mozambique Ocean. The continent Australia/ Mawson was still separated from India, eastern Africa, and Kalahari by c. 600 Ma , when most of western Gondwana had already been amalgamated. By c. 550 Ma, India had reached its Gondwanan position, which initiated

4366-1073: The Australian Plate are now separated by the Capricorn Plate and its diffuse boundaries. During the opening of the Indian Ocean, the Kerguelen hotspot first formed the Kerguelen Plateau on the Antarctic Plate c. 118 to 95 Ma and then the Ninety East Ridge on the Indian Plate at c. 100 Ma . The Kerguelen Plateau and the Broken Ridge , the southern end of the Ninety East Ridge, are now separated by

4484-843: The Campbell Plateau , Chatham Rise , Lord Howe Rise , Norfolk Ridge , and New Caledonia , from West Antarctica c. 84 Ma . The opening of the South Atlantic Ocean divided West Gondwana (South America and Africa), but there is considerable debate over the exact timing of this break-up. Rifting propagated from south to north along Triassic–Early Jurassic lineaments, but intra-continental rifts also began to develop within both continents in Jurassic–Cretaceous sedimentary basins, subdividing each continent into three sub-plates. Rifting began c. 190 Ma at Falkland latitudes, forcing Patagonia to move relative to

4602-549: The Central Atlantic opened . Antarctica, the centre of the supercontinent, shared boundaries with all other Gondwana continents and the fragmentation of Gondwana propagated clockwise around it. The break-up was the result of the eruption of the Karoo-Ferrar igneous province , one of the Earth's most extensive large igneous provinces (LIP) c. 200 to 170 Ma , but the oldest magnetic anomalies between South America, Africa, and Antarctica are found in what

4720-833: The Drake Passage and the deepening of the Tasman Gateway. The oldest oceanic crust in the Drake Passage, however, is 34 to 29 Ma -old which indicates that the spreading between the Antarctic and South American plates began near the Eocene/Oligocene boundary. Deep sea environments in Tierra del Fuego and the North Scotia Ridge during the Eocene and Oligocene indicate a "Proto-ACC" opened during this period. Later, 26 to 14 Ma ,

4838-756: The Great American Interchange . The break-up of Gondwana can be said to continue in eastern Africa at the Afar Triple Junction , which separates the Arabian , Nubian , and Somali plates, resulting in rifting in the Red Sea and East African Rift . In the Early Cenozoic , Australia was still connected to Antarctica c. 35–40° south of its current location and both continents were largely unglaciated. A rift between

Gondwana - Misplaced Pages Continue

4956-801: The Himalayan - Tibetan orogen. During the Cenozoic, the orogen resulted in the construction of the Tibetan Plateau between the Tethyan Himalayas in the south and the Kunlun and Qilian mountains in the north. Later, South America was connected to North America via the Isthmus of Panama , cutting off a circulation of warm water and thereby making the Arctic colder, as well as allowing

5074-466: The Mesoproterozoic , primarily by lateral accretion of juvenile arcs, and in ~1000 Ma Nuna collided with other land masses, forming Rodinia . Between ~825 and 750 Ma Rodinia broke apart. However, before completely breaking up, some fragments of Rodinia had already come together to form Gondwana by ~608 Ma . Pangaea formed through the collision of Gondwana, Laurasia ( Laurentia and Baltica ), and Siberia . The second model (Kenorland-Arctica)

5192-478: The Ordovician . This is the Cuyania or Precordillera terrane of the Famatinian orogeny in northwest Argentina which may have continued the line of the Appalachians southwards. Chilenia terrane accreted later against Cuyania. The collision of the Patagonian terrane with the southwestern Gondwanan occurred in the late Paleozoic. Subduction-related igneous rocks from beneath the North Patagonian Massif have been dated at 320–330 million years old, indicating that

5310-409: The Pan-African orogeny , caused the continental fragments of a much older supercontinent, Rodinia , to amalgamate. One of those orogenic belts, the Mozambique Belt , formed 800 to 650 Ma and was originally interpreted as the suture between East (India, Madagascar, Antarctica, and Australia) and West Gondwana (Africa and South America). Three orogenies were recognised during the 1990s as

5428-498: The Southeast Indian Ridge . Separation between Australia and East Antarctica began c. 132 Ma with seafloor spreading occurring c. 96 Ma . A shallow seaway developed over the South Tasman Rise during the Early Cenozoic and as oceanic crust started to separate the continents during the Eocene c. 35.5 Ma global ocean temperature dropped significantly. A dramatic shift from arc- to rift magmatism c. 100 Ma separated Zealandia , including New Zealand ,

5546-441: The Uralian orogeny and Laurasia . Pangaea was finally amalgamated in the Late Carboniferous-Early Permian, but the oblique forces continued until Pangaea began to rift in the Triassic. In the eastern end, collisions occurred slightly later. The North China , South China , and Indochina blocks rifted from Gondwana during the middle Paleozoic and opened the Proto-Tethys Ocean . North China docked with Mongolia and Siberia during

5664-421: The Variscan orogeny close to the Carboniferous–Permian boundary. South-east Asia was made of Gondwanan and Cathaysian continental fragments that were assembled during the Mid-Palaeozoic and Cenozoic. This process can be divided into three phases of rifting along Gondwana's northern margin: first, in the Devonian, North and South China , together with Tarim and Quidam (north-western China) rifted, opening

5782-401: The uplift and erosion known to have occurred from the Late Cretaceous onward. Plate tectonic reorganisation since the mid-Cretaceous might also have been linked to the opening of the South Atlantic Ocean . Another change related to mid-Cretaceous plate tectonic rearrangement was the change of subduction direction of the oceanic lithosphere that went from having south-east motion to having

5900-403: The upper mantle by replenishing the large-ion lithophile elements , volcanism affects plate movement. The plates will be moved towards a geoidal low perhaps where the slab avalanche occurred and pushed away from the geoidal high that can be caused by the plumes or superplumes. This causes the continents to push together to form supercontinents and was evidently the process that operated to cause

6018-444: The Carboniferous. Pangaea began to break up in the Mid-Jurassic when the Central Atlantic opened . In the western end of Pangaea, the collision between Gondwana and Laurasia closed the Rheic and Palaeo-Tethys oceans. The obliquity of this closure resulted in the docking of some northern terranes in the Marathon , Ouachita , Alleghanian , and Variscan orogenies, respectively. Southern terranes, such as Chortis and Oaxaca , on

SECTION 50

#1732773082359

6136-501: The Carboniferous–Permian, followed by South China. The Cimmerian blocks then rifted from Gondwana to form the Palaeo-Thethys and Neo-Tethys oceans in the Late Carboniferous, and docked with Asia during the Triassic and Jurassic. Western Pangaea began to rift while the eastern end was still being assembled. The formation of Pangaea and its mountains had a tremendous impact on global climate and sea levels, which resulted in glaciations and continent-wide sedimentation. In North America,

6254-404: The Early Cretaceous, and West Burma and Woyla during the Late Cretaceous. Gondwana's long, northern margin remained a mostly passive margin throughout the Palaeozoic. The Early Permian opening of the Neo-Tethys Ocean along this margin produced a long series of terranes, many of which were and still are being deformed in the Himalaya Orogeny . These terranes are, from Turkey to north-eastern India:

6372-411: The Earth's crust), beginning c.   800 to 650 Ma with the East African Orogeny , the collision of India and Madagascar with East Africa, and culminating in c.   600 to 530 Ma with the overlapping Brasiliano and Kuunga orogenies, the collision of South America with Africa, and the addition of Australia and Antarctica, respectively. Eventually, Gondwana became

6490-447: The Equator during this period and remained a lifeless and barren landscape. West Gondwana drifted north during the Devonian , bringing Gondwana and Laurasia close together. Global cooling contributed to the Late Devonian extinction (19% of marine families and 50% of genera went extinct) and glaciation occurred in South America. Before Pangaea had formed, terrestrial plants, such as pteridophytes , began to diversify rapidly resulting in

6608-400: The Equator on landmasses then limited to Laurasia and, in Gondwana, to Australia. In the late Silurian, two distinctive lineages, zosterophylls and rhyniophytes , had colonised the tropics. The former evolved into the lycopods that were to dominate the Gondwanan vegetation over a long period, whilst the latter evolved into horsetails and gymnosperms . Most of Gondwana was located far from

6726-442: The Gondwana sedimentary sequences ( Permian - Triassic ) are also described. Some scientists prefer the term "Gondwanaland" for the supercontinent to make a clear distinction between the region and the supercontinent. The assembly of Gondwana was a protracted process during the Neoproterozoic and Paleozoic , which remains incompletely understood because of the lack of paleo-magnetic data. Several orogenies , collectively known as

6844-446: The Jurassic flora was dominated by conifer families and other gymnosperms that had evolved during the Triassic. The Pteridophytes that had dominated during the Palaeozoic were now marginalised, except for ferns. In contrast to Laurentia, very few insect fossils have been found in Gondwana, to a considerable extent because of widespread deserts and volcanism. While plants had a cosmopolitan distribution, dinosaurs evolved and diversified in

6962-405: The Kuunga orogeny (also known as the Pinjarra orogeny). Meanwhile, on the other side of the newly forming Africa, Kalahari collided with Congo and Rio de la Plata which closed the Adamastor Ocean . c. 540–530 Ma, the closure of the Mozambique Ocean brought India next to Australia–East Antarctica, and both North and South China were in proximity to Australia. As the rest of Gondwana formed,

7080-421: The Late Permian, many known from South Africa and Australia. Beetles and cockroaches remained minor elements in this fauna. Tetrapod fossils from the Early Permian have only been found in Laurasia but they became common in Gondwana later during the Permian. The arrival of the therapsids resulted in the first plant-vertebrate-insect ecosystem. During the Mid- to Late Triassic, hot-house conditions coincided with

7198-405: The Miocene, a warm and humid climate developed with pockets of rainforests in central Australia, but before the end of the period, colder and drier climate severely reduced this rainforest. A brief period of increased rainfall in the Pliocene was followed by drier climate which favoured grassland. Since then, the fluctuation between wet interglacial periods and dry glacial periods has developed into

SECTION 60

#1732773082359

7316-442: The Neoproterozoic to Palaeozoic phase of the Terra Australis Orogen , a series of terranes were rafted from the proto-Andean margin when the Iapteus Ocean opened, to be added back to Gondwana during the closure of that ocean. During the Paleozoic, some blocks which helped to form parts of the Southern Cone of South America, include a piece transferred from Laurentia when the west edge of Gondwana scraped against southeast Laurentia in

7434-441: The Palaeo-Tethys behind them. These terranes accreted to Asia during Late Devonian and Permian. Second, in the Late Carboniferous to Early Permian, Cimmerian terranes opened Meso-Tethys Ocean; Sibumasu and Qiangtang were added to south-east Asia during Late Permian and Early Jurassic. Third, in the Late Triassic to Late Jurassic, Lhasa , West Burma , Woyla terranes opened the Neo-Tethys Ocean; Lhasa collided with Asia during

7552-402: The Protopangea–Paleopangea solution implies that Phanerozoic style of supercontinent cycles did not operate during these times. Also, there are instances where these secular trends have a weak, uneven, or absent imprint on the supercontinent cycle; secular methods for supercontinent reconstruction will produce results that have only one explanation, and each explanation for a trend must fit in with

7670-453: The South Atlantic (Brazil and Cameroon ) dating to around 120  million years ago , suggesting that some form of land connection still existed between Africa and South America as recently as the early Aptian . The first phases of Andean orogeny in the Jurassic and Early Cretaceous were characterised by extensional tectonics , rifting , the development of back-arc basins and the emplacement of large batholiths . This development

7788-481: The South Pole may have reached freezing, there were no ice sheets during the early Silurian (~443.8 Ma) through the late Mississippian (~330.9 Ma). Agreement can be met with the theory that continental snow can occur when the edge of a continent is near the pole. Therefore Gondwana, although located tangent to the South Pole, may have experienced glaciation along its coasts. Though precipitation rates during monsoonal circulations are difficult to predict, there

7906-437: The Southern Hemisphere continents later. [REDACTED] Africa Supercontinent Moving under the forces of plate tectonics , supercontinents have assembled and dispersed multiple times in the geologic past. According to modern definitions, a supercontinent does not exist today; the closest is the current Afro-Eurasian landmass, which covers approximately 57% of Earth's total land area. The last period in which

8024-464: The Southern Hemisphere, has a "Gondwanan distribution" and is often described as an archaic, or relict , lineage. The distributions in the Proteaceae is, nevertheless, the result of both Gondwanan rafting and later oceanic dispersal. During the Silurian, Gondwana extended from the Equator (Australia) to the South Pole (North Africa and South America) whilst Laurasia was located on the Equator opposite to Australia. A short-lived Late Ordovician glaciation

8142-407: The Taurides in southern Turkey; the Lesser Caucasus Terrane in Georgia; the Sanand, Alborz, and Lut terranes in Iran; the Mangysglak or Kopetdag Terrane in the Caspian Sea; the Afghan Terrane; the Karakorum Terrane in northern Pakistan; and the Lhasa and Qiangtang terranes in Tibet. The Permian–Triassic widening of the Neo-Tethys pushed all these terranes across the Equator and over to Eurasia. During

8260-399: The accretion and dispersion of supercontinents is seen in the geological rock record. The influence of known volcanic eruptions does not compare to that of flood basalts . The timing of flood basalts has corresponded with a large-scale continental break-up. However, due to a lack of data on the time required to produce flood basalts, the climatic impact is difficult to quantify. The timing of

8378-549: The base of the Absaroka sequence coincides with the Alleghanian and Ouachita orogenies and are indicative of a large-scale change in the mode of deposition far away from the Pangaean orogenies. Ultimately, these changes contributed to the Permian–Triassic extinction event and left large deposits of hydrocarbons, coal, evaporite, and metals. The breakup of Pangaea began with the Central Atlantic magmatic province (CAMP) between South America, Africa, North America, and Europe. CAMP covered more than seven million square kilometres over

8496-400: The break-up of supercontinents and die during supercontinent assembly. Pangaea's supercontinent cycle is a good example of the efficiency of using the presence or lack of these entities to record the development, tenure, and break-up of supercontinents. There is a sharp decrease in passive margins between 500 and 350 Ma during the timing of Pangaea's assembly. The tenure of Pangaea is marked by

8614-414: The breakup of Precambrian supercontinents and the lack of land plants as a carbon sink . During the late Permian, it is expected that seasonal Pangaean temperatures varied drastically. Subtropic summer temperatures were warmer than that of today by as much as 6–10 degrees, and mid-latitudes in the winter were less than −30 degrees Celsius. These seasonal changes within the supercontinent were influenced by

8732-422: The climate of the planet drastically, with supercontinents having a larger, more prevalent influence. Continents modify global wind patterns, control ocean current paths, and have a higher albedo than the oceans. Winds are redirected by mountains, and albedo differences cause shifts in onshore winds. Higher elevation in continental interiors produces a cooler, drier climate, the phenomenon of continentality . This

8850-540: The colonisation of Gondwana. The Baragwanathia Flora, found only in the Yea Beds of Victoria, Australia, occurs in two strata separated by 1,700 m (5,600 ft) or 30 Ma; the upper assemblage is more diverse and includes Baragwanathia, the first primitive herbaceous lycopod to evolve from the zosterophylls. During the Devonian, giant club mosses replaced the Baragwanathia Flora, introducing

8968-739: The consumption of CO 2 . Even though during the Archaean solar radiation was reduced by 30 percent and the Cambrian - Precambrian boundary by 6 percent, the Earth has only experienced three ice ages throughout the Precambrian. Erroneous conclusions are more likely to be made when models are limited to one climatic configuration (which is usually present-day). Cold winters in continental interiors are due to rate ratios of radiative cooling (greater) and heat transport from continental rims. To raise winter temperatures within continental interiors,

9086-456: The contemporary Earth became dominant only during the latter part of geological times. This approach was widely criticized by many researchers as it uses incorrect application of paleomagnetic data. A supercontinent cycle is the break-up of one supercontinent and the development of another, which takes place on a global scale. Supercontinent cycles are not the same as the Wilson cycle , which

9204-752: The continent Kazakhstania in the late Silurian . Whether these blocks originated on the shores of Gondwana is not known. In the Early Palaeozoic, the Armorican terrane , which today form large parts of France, was part of either Peri-Gondwana or core Gondwana; the Rheic Ocean closed in front of it and the Palaeo-Tethys Ocean opened behind it. Precambrian rocks from the Iberian Peninsula suggest that it, too, formed part of core Gondwana before its detachment as an orocline in

9322-422: The continent became the arid or semiarid landscape it is today. The adjective "Gondwanan" is in common use in biogeography when referring to patterns of distribution of living organisms, typically when the organisms are restricted to two or more of the now-discontinuous regions that were once part of Gondwana, including the Antarctic flora . For example, the plant family Proteaceae , known from all continents in

9440-426: The continental landmasses were near to one another was 336 to 175 million years ago, forming the supercontinent Pangaea . The positions of continents have been accurately determined back to the early Jurassic , shortly before the breakup of Pangaea. Pangaea's predecessor Gondwana is not considered a supercontinent under the first definition since the landmasses of Baltica , Laurentia and Siberia were separate at

9558-832: The development of rifts systems on both continents, including the Central African Rift System and the Central African Shear Zone which lasted until c. 85 Ma . At Brazilian latitudes spreading is more difficult to assess because of the lack of palaeo-magnetic data, but rifting occurred in Nigeria at the Benue Trough c. 118 Ma . North of the Equator the rifting began after 120.4 Ma and continued until c. 100 to 96 Ma . Dinosaur footprints representing identical species assemblages are known from opposite sides of

9676-416: The early continental crust to aggregate into Protopangea. Dispersal of supercontinents is caused by the accumulation of heat underneath the crust due to the rising of very large convection cells or plumes, and a massive heat release resulted in the final break-up of Paleopangea. Accretion occurs over geoidal lows that can be caused by avalanche slabs or the downgoing limbs of convection cells. Evidence of

9794-592: The eastern part, and the western part is the Appalachian Mountains , uplifted in the early Permian . (The existence of a flat elevated plateau like the Tibetan Plateau is under debate.) The locality of the Variscan range made it influential to both the northern and southern hemispheres. The elevation of the Appalachians would greatly influence global atmospheric circulation. Continents affect

9912-556: The end of it. Bennettitales and Pentoxylales , two now extinct orders of gymnospermous plants, evolved in the Late Triassic and became important in the Jurassic and Cretaceous. It is possible that gymnosperm biodiversity surpassed later angiosperm biodiversity and that the evolution of angiosperms began during the Triassic but, if so, in Laurasia rather than in Gondwana. Two Gondwanan classes, lycophytes and sphenophytes , saw

10030-440: The environment throughout time. Phanerozoic (541 Ma to present) and Precambrian ( 4.6 Ga to 541 Ma ) had primarily passive margins and detrital zircons (and orogenic granites ), whereas the tenure of Pangaea contained few. Matching edges of continents are where passive margins form. The edges of these continents may rift . At this point, seafloor spreading becomes the driving force. Passive margins are therefore born during

10148-943: The eruption of the Deccan basalts , whose eruption site may survive as the Réunion hotspot . The Seychelles and the Maldives are now separated by the Central Indian Ridge . During the initial break-up in the Early Jurassic a marine transgression swept over the Horn of Africa covering Triassic planation surfaces with sandstone , limestone , shale , marls and evaporites . East Gondwana, comprising Antarctica, Madagascar, India, and Australia, began to separate from Africa. East Gondwana then began to break up c. 132.5 to 96 Ma when India moved northwest from Australia-Antarctica. The Indian Plate and

10266-563: The evolution of Voltziales , one of the few plant orders to survive the end-Permian extinction (57% of marine families and 83% of genera went extinct) and which came to dominate in the Late Permian and from whom true conifers evolved. Tall lycopods and horsetails dominated the wetlands of Gondwana in the Early Permian. Insects co-evolved with glossopterids across Gondwana and diversified with more than 200 species in 21 orders by

10384-563: The first amniote reptilians evolved, all closely related to the Laurasian fauna, but spreading ice eventually drove these animals away from Gondwana entirely. The Gondwana ice sheet melted, and sea levels dropped during the Permian and Triassic global warming. During this period, the extinct glossopterids colonised Gondwana and reached peak diversity in the Late Permian when coal-forming forests covered much of Gondwana. The period also saw

10502-521: The first trees, and by the Late Devonian this first forest was accompanied by the progymnosperms , including the first large trees Archaeopteris . The Late Devonian extinction probably also resulted in osteolepiform fishes evolving into the amphibian tetrapods , the earliest land vertebrates, in Greenland and Russia. The only traces of this evolution in Gondwana are amphibian footprints and

10620-526: The flora in northeastern Australia. There is, however, no obvious connection between this spectacular angiosperm radiation and any known extinction event nor with vertebrate/insect evolution. Insect orders associated with pollination, such as beetles , flies , butterflies and moths , and wasps, bees, and ants , radiated continuously from the Permian-Triassic, long before the arrival of the angiosperms. Well-preserved insect fossils have been found in

10738-635: The fracture zones and magnetic anomalies flanking the Southwest Indian Ridge . The Madagascar block and the Mascarene Plateau , stretching from the Seychelles to Réunion , were broken off India, causing Madagascar and Insular India to be separate landmasses : elements of this break-up nearly coincide with the Cretaceous–Paleogene extinction event . The India–Madagascar–Seychelles separations appear to coincide with

10856-683: The gaps. These detrital zircons are taken from the sands of major modern rivers and their drainage basins . Oceanic magnetic anomalies and paleomagnetic data are the primary resources used for reconstructing continent and supercontinent locations back to roughly 150 Ma. [REDACTED] Africa [REDACTED] Antarctica [REDACTED] Asia [REDACTED] Australia [REDACTED] Europe [REDACTED] North America [REDACTED] South America [REDACTED] Afro-Eurasia [REDACTED] Americas [REDACTED] Eurasia [REDACTED] Oceania Malagasy Orogeny The Malagasy orogeny

10974-474: The lack of iron formations may have been the result of an increase in oxygen. The fourth oxygenation event, roughly 0.6 Ga, is based on modeled rates of sulfur isotopes from marine carbonate-associated sulfates . An increase (near doubled concentration) of sulfur isotopes, which is suggested by these models, would require an increase in the oxygen content of the deep oceans. Between 650 and 550 Ma there were three increases in ocean oxygen levels, this period

11092-860: The lake deposits of the Santana Formation in Brazil, the Koonwarra Lake fauna in Australia, and the Orapa diamond mine in Botswana. Dinosaurs continued to prosper but, as the angiosperm diversified, conifers, bennettitaleans and pentoxylaleans disappeared from Gondwana c. 115 Ma together with the specialised herbivorous ornithischians , whilst generalist browsers, such as several families of sauropodomorph Saurischia , prevailed. The Cretaceous–Paleogene extinction event killed off all dinosaurs except birds, but plant evolution in Gondwana

11210-411: The large size of Pangaea. And, just like today, coastal regions experienced much less variation. During the Jurassic, summer temperatures did not rise above zero degrees Celsius along the northern rim of Laurasia, which was the northernmost part of Pangaea (the southernmost portion of Pangaea was Gondwana). Ice-rafted dropstones sourced from Russia are indicators of this northern boundary. The Jurassic

11328-698: The largest piece of continental crust of the Palaeozoic Era, covering an area of some 100,000,000 km (39,000,000 sq mi), about one-fifth of the Earth's surface. It fused with Euramerica during the Carboniferous to form Pangea . It began to separate from northern Pangea ( Laurasia ) during the Triassic , and started to fragment during the Early Jurassic (around 180 million years ago). The final stages of break-up, involving

11446-433: The mass amounts of nutrients, including iron and phosphorus , would have washed into oceans, just as is seen happening today. The oceans would then be rich in nutrients essential to photosynthetic organisms, which would then be able to respire mass amounts of oxygen. There is an apparent direct relationship between orogeny and the atmospheric oxygen content. There is also evidence for increased sedimentation concurrent with

11564-644: The opening of the Iapetus Ocean between Laurentia and western Gondwana. During this interval, the Cambrian explosion occurred. Laurentia was docked against the western shores of a united Gondwana for a brief period near the Precambrian/Cambrian boundary, forming the short-lived and still disputed supercontinent Pannotia . The Mozambique Ocean separated the Congo – Tanzania – Bangweulu Block of central Africa from Neoproterozoic India (India,

11682-585: The orogenesis between India and a series of Gondwanan cratonic blocks in present-day Africa ( Congo / Tanzania / Bangweulu / Azania ). In their reconstruction, India collided with Australia/ Mawson in the Kuunga orogeny before the formation of Gondwana. They identified the Betsimisaraka suture in eastern Madagascar as the boundary between the African and India terranes. This orogeny article

11800-600: The other hand, remained largely unaffected by the collision along the southern shores of Laurentia. Some Peri-Gondwanan terranes, such as Yucatán and Florida , were buffered from collisions by major promontories. Other terranes, such as Carolina and Meguma , were directly involved in the collision. The final collision resulted in the Variscan- Appalachian Mountains , stretching from present-day Mexico to southern Europe. Meanwhile, Baltica collided with Siberia and Kazakhstania which resulted in

11918-560: The present arid regime. Australia has thus experienced various climate changes over a 15-million-year period with a gradual decrease in precipitation. The Tasman Gateway between Australia and Antarctica began to open c. 40 to 30 Ma . Palaeontological evidence indicates the Antarctic Circumpolar Current (ACC) was established in the Late Oligocene c. 23 Ma with the full opening of

12036-479: The rate of heat transport must increase to become greater than the rate of radiative cooling. Through climate models, alterations in atmospheric CO 2 content and ocean heat transport are not comparatively effective. CO 2 models suggest that values were low in the late Cenozoic and Carboniferous-Permian glaciations. Although early Paleozoic values are much larger (more than 10 percent higher than that of today). This may be due to high seafloor spreading rates after

12154-527: The reconstruction. During the intervening periods, the poles conform to a unified apparent polar wander path. Although it contrasts the first model, the first phase (Protopangea) essentially incorporates Vaalbara and Kenorland of the first model. The explanation for the prolonged duration of the Protopangea–Paleopangea supercontinent appears to be that lid tectonics (comparable to the tectonics operating on Mars and Venus) prevailed during Precambrian times. According to this theory, plate tectonics as seen on

12272-757: The remaining Gondwana c. 570 to 530 Ma in the Kuunga Orogeny. The later Malagasy orogeny at about 550–515 Mya affected Madagascar, eastern East Africa and southern India. In it, Neoproterozoic India collided with the already combined Azania and Congo–Tanzania–Bangweulu Block, suturing along the Mozambique Belt. The 18,000 km-long (11,000 mi) Terra Australis Orogen developed along Gondwana's western, southern, and eastern margins. Proto-Gondwanan Cambrian arc belts from this margin have been found in eastern Australia, Tasmania, New Zealand, and Antarctica. Though these belts formed

12390-557: The rest. The following table names reconstructed ancient supercontinents, using Bradley's 2011 looser definition, with an approximate timescale of millions of years ago (Ma). The causes of supercontinent assembly and dispersal are thought to be driven by convection processes in Earth's mantle . Approximately 660 km into the mantle, a discontinuity occurs, affecting the surface crust through processes involving plumes and superplumes (aka large low-shear-velocity provinces ). When

12508-471: The rock record. Their fluctuations correlate with Precambrian supercontinent cycles. The U–Pb zircon dates from orogenic granites are among the most reliable aging determinants. Some issues exist with relying on granite sourced zircons, such as a lack of evenly globally sourced data and the loss of granite zircons by sedimentary coverage or plutonic consumption. Where granite zircons are less adequate, detrital zircons from sandstones appear and make up for

12626-591: The second period of oxygenation occurred, which has been called the 'great oxygenation event.' Evidence supporting this event includes red beds appearance 2.3 Ga (meaning that Fe was being produced and became an important component in soils). The third oxygenation stage approximately 1.8 Ga is indicated by the disappearance of iron formations. Neodymium isotopic studies suggest that iron formations are usually from continental sources, meaning that dissolved Fe and Fe had to be transported during continental erosion. A rise in atmospheric oxygen prevents Fe transport, so

12744-537: The separation of Antarctica from South America (forming the Drake Passage ) and Australia, occurred during the Paleogene (from around 66 to 23 million years ago (Ma)). Gondwana was not considered a supercontinent by the earliest definition, since the landmasses of Baltica , Laurentia , and Siberia were separated from it. To differentiate it from the Indian region of the same name (see § Name ), it

12862-665: The still static remainder of South America and Africa, and this westward movement lasted until the Early Cretaceous 126.7 Ma . From there rifting propagated northward during the Late Jurassic c. 150 Ma or Early Cretaceous c. 140 Ma most likely forcing dextral movements between sub-plates on either side. South of the Walvis Ridge and Rio Grande Rise the Paraná and Etendeka magmatics resulted in further ocean-floor spreading c. 130 to 135 Ma and

12980-484: The subduction process initiated in the early Carboniferous. This was relatively short-lived (lasting about 20 million years), and initial contact of the two landmasses occurred in the mid-Carboniferous, with broader collision during the early Permian. In the Devonian, an island arc named Chaitenia accreted to Patagonia in what is now south-central Chile. Gondwana and Laurasia formed the Pangaea supercontinent during

13098-505: The supercontinent Pangaea. Climate modeling shows that summer fluctuations varied 14–16 degrees Celsius on Pangaea, which is similar or slightly higher than summer temperatures of Eurasia during the Pleistocene. The largest-amplitude Milankovitch cycles are expected to have been at mid-to high-latitudes during the Triassic and Jurassic. Plate tectonics and the chemical composition of the atmosphere (specifically greenhouse gases ) are

13216-403: The suture zone. Intracratonic orogenic belts occur as thrust belts and do not contain any oceanic material. However, the absence of ophiolites is not strong evidence for intracratonic belts, because the oceanic material can be squeezed out and eroded away in an intracratonic environment. The third kind of orogenic belt is a confined orogenic belt which is the closure of small basins. The assembly of

13334-404: The time. A future supercontinent, termed Pangaea Proxima , is hypothesized to form within the next 250 million years. The Phanerozoic supercontinent Pangaea began to break up 215 Ma and this distancing continues today. Because Pangaea is the most recent of Earth's supercontinents, it is the best known and understood. Contributing to Pangaea's popularity in the classroom, its reconstruction

13452-485: The timing of these mass oxygenation events, meaning that the organic carbon and pyrite at these times were more likely to be buried beneath sediment and therefore unable to react with the free oxygen. This sustained the atmospheric oxygen increases. At 2.65 Ga there was an increase in molybdenum isotope fractionation. It was temporary but supports the increase in atmospheric oxygen because molybdenum isotopes require free oxygen to fractionate. Between 2.45 and 2.32 Ga,

13570-635: The two developed but remained an embayment until the Eocene-Oligocene boundary when the Circumpolar Current developed and the glaciation of Antarctica began. Australia was warm and wet during the Palaeocene and dominated by rainforest. The opening of the Tasman Gateway at the Eocene-Oligocene boundary ( 33 Ma ) resulted in abrupt cooling but the Oligocene became a period of high rainfall with swamps in southeast Australia. During

13688-422: The two most prevailing factors present within the geologic time scale. Continental drift influences both cold and warm climatic episodes. Atmospheric circulation and climate are strongly influenced by the location and formation of continents and supercontinents. Therefore, continental drift influences mean global temperature. Oxygen levels of the Archaean were negligible, and today they are roughly 21 percent. It

13806-481: Was followed by a Silurian Hot House period. The End-Ordovician extinction , which resulted in 27% of marine invertebrate families and 57% of genera going extinct, occurred during this shift from Ice House to Hot House. By the end of the Ordovician, Cooksonia , a slender, ground-covering plant, became the first known vascular plant to establish itself on land. This first colonisation occurred exclusively around

13924-537: Was hardly affected. Gondwanatheria is an extinct group of non- therian mammals with a Gondwanan distribution (South America, Africa, Madagascar, India, Zealandia and Antarctica) during the Late Cretaceous and Palaeogene. Xenarthra and Afrotheria , two placental clades, are of Gondwanan origin and probably began to evolve separately c. 105 Ma when Africa and South America separated. The laurel forests of Australia, New Caledonia, and New Zealand have

#358641