Misplaced Pages

Gruiformes

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Order ( Latin : ordo ) is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy . It is classified between family and class . In biological classification , the order is a taxonomic rank used in the classification of organisms and recognized by the nomenclature codes . An immediately higher rank, superorder , is sometimes added directly above order, with suborder directly beneath order. An order can also be defined as a group of related families.

#825174

78-540: Some 5–10 living, see article text. The Gruiformes ( / ˈ ɡ r uː ɪ f ɔːr m iː z / GROO -ih-for-meez ) are an order containing a considerable number of living and extinct bird families , with a widespread geographical diversity. Gruiform means "crane-like". Traditionally, a number of wading and terrestrial bird families that did not seem to belong to any other order were classified together as Gruiformes. These include 15 species of large cranes , about 145 species of smaller crakes and rails , as well as

156-507: A circular mitochondrial genome. Medusozoa and calcarea clades however include species with linear mitochondrial chromosomes. With a few exceptions, animals have 37 genes in their mitochondrial DNA: 13 for proteins , 22 for tRNAs , and 2 for rRNAs . Mitochondrial genomes for animals average about 16,000 base pairs in length. The anemone Isarachnanthus nocturnus has the largest mitochondrial genome of any animal at 80,923 bp. The smallest known mitochondrial genome in animals belongs to

234-593: A database) to determine maternal lineage. Most often, the comparison is made with the revised Cambridge Reference Sequence . Vilà et al. have published studies tracing the matrilineal descent of domestic dogs from wolves. The concept of the Mitochondrial Eve is based on the same type of analysis, attempting to discover the origin of humanity by tracking the lineage back in time. Entities subject to uniparental inheritance and with little to no recombination may be expected to be subject to Muller's ratchet ,

312-500: A donor female, and nuclear DNA from the mother and father. In the spindle transfer procedure, the nucleus of an egg is inserted into the cytoplasm of an egg from a donor female which has had its nucleus removed, but still contains the donor female's mtDNA. The composite egg is then fertilized with the male's sperm. The procedure is used when a woman with genetically defective mitochondria wishes to procreate and produce offspring with healthy mitochondria. The first known child to be born as

390-435: A finding that has been rejected by other scientists. In sexual reproduction , mitochondria are normally inherited exclusively from the mother; the mitochondria in mammalian sperm are usually destroyed by the egg cell after fertilization. Also, mitochondria are present solely in the midpiece, which is used for propelling the sperm cells, and sometimes the midpiece, along with the tail, is lost during fertilization. In 1999 it

468-434: A genome suggests that complete gene loss is possible, and transferring mitochondrial genes to the nucleus has several advantages. The difficulty of targeting remotely-produced hydrophobic protein products to the mitochondrion is one hypothesis for why some genes are retained in mtDNA; colocalisation for redox regulation is another, citing the desirability of localised control over mitochondrial machinery. Recent analysis of

546-545: A healthy human sperm has been reported to contain on average 5 molecules), degradation of sperm mtDNA in the male genital tract and in the fertilized egg; and, at least in a few organisms, failure of sperm mtDNA to enter the egg. Whatever the mechanism, this single parent ( uniparental inheritance ) pattern of mtDNA inheritance is found in most animals, most plants and also in fungi. In a study published in 2018, human babies were reported to inherit mtDNA from both their fathers and their mothers resulting in mtDNA heteroplasmy ,

624-405: A mainstay of phylogenetics and evolutionary biology . It also permits tracing the relationships of populations, and so has become important in anthropology and biogeography . Nuclear and mitochondrial DNA are thought to have separate evolutionary origins, with the mtDNA derived from the circular genomes of bacteria engulfed by the ancestors of modern eukaryotic cells. This theory is called

702-542: A mutation in mtDNA has been used to help diagnose prostate cancer in patients with negative prostate biopsy . mtDNA alterations can be detected in the bio-fluids of patients with cancer. mtDNA is characterized by the high rate of polymorphisms and mutations. Some of which are increasingly recognized as an important cause of human pathology such as oxidative phosphorylation (OXPHOS) disorders, maternally inherited diabetes and deafness (MIDD), Type 2 diabetes mellitus, Neurodegenerative disease , heart failure and cancer. Though

780-626: A mutational (contrary to the selective one) explanation for the observation that long-lived species have GC-rich mtDNA: long-lived species become GC-rich simply because of their biased process of mutagenesis. An association between mtDNA mutational spectrum and species-specific life-history traits in mammals opens a possibility to link these factors together discovering new life-history-specific mutagens in different groups of organisms. Deletion breakpoints frequently occur within or near regions showing non-canonical (non-B) conformations, namely hairpins, cruciforms and cloverleaf-like elements. Moreover, there

858-525: A result of mitochondrial donation was a boy born to a Jordanian couple in Mexico on 6 April 2016. The concept that mtDNA is particularly susceptible to reactive oxygen species generated by the respiratory chain due to its proximity remains controversial. mtDNA does not accumulate any more oxidative base damage than nuclear DNA. It has been reported that at least some types of oxidative DNA damage are repaired more efficiently in mitochondria than they are in

SECTION 10

#1732780384826

936-510: A role in the mitochondrial bottleneck, exploiting cell-to-cell variability to ameliorate the inheritance of damaging mutations. According to Justin St. John and colleagues, "At the blastocyst stage, the onset of mtDNA replication is specific to the cells of the trophectoderm . In contrast, the cells of the inner cell mass restrict mtDNA replication until they receive the signals to differentiate to specific cell types." The two strands of

1014-435: A species and also for identifying and quantifying the phylogeny (evolutionary relationships; see phylogenetics ) among different species. To do this, biologists determine and then compare the mtDNA sequences from different individuals or species. Data from the comparisons is used to construct a network of relationships among the sequences, which provides an estimate of the relationships among the individuals or species from which

1092-630: A stabilisation or reduction in mutant load between generations. The mechanism underlying the bottleneck is debated, with a recent mathematical and experimental metastudy providing evidence for a combination of the random partitioning of mtDNAs at cell divisions and the random turnover of mtDNA molecules within the cell. Male mitochondrial DNA inheritance has been discovered in Plymouth Rock chickens . Evidence supports rare instances of male mitochondrial inheritance in some mammals as well. Specifically, documented occurrences exist for mice, where

1170-619: A variety of families comprising one to three species , such as the Heliornithidae , the limpkin , or the Psophiidae . Other birds have been placed in this order more out of necessity to place them somewhere ; this has caused the expanded Gruiformes to lack distinctive apomorphies . Recent studies indicate that these "odd Gruiformes" are if at all only loosely related to the cranes, rails, and relatives ("core Gruiformes"). There are only two suprafamilial clades (natural groups) among

1248-448: A wide range of mtDNA genomes suggests that both these features may dictate mitochondrial gene retention. Across all organisms, there are six main mitochondrial genome types, classified by structure (i.e. circular versus linear), size, presence of introns or plasmid like structures , and whether the genetic material is a singular molecule or collection of homogeneous or heterogeneous molecules. In many unicellular organisms (e.g.,

1326-532: Is a linear genome made up of homogeneous DNA molecules (type 5). Great variation in mtDNA gene content and size exists among fungi and plants, although there appears to be a core subset of genes present in all eukaryotes (except for the few that have no mitochondria at all). In Fungi, however, there is no single gene shared among all mitogenomes. Some plant species have enormous mitochondrial genomes, with Silene conica mtDNA containing as many as 11,300,000 base pairs. Surprisingly, even those huge mtDNAs contain

1404-467: Is a well-established marker of oxidative DNA damage. In persons with amyotrophic lateral sclerosis (ALS), the enzymes that normally repair 8-oxoG DNA damages in the mtDNA of spinal motor neurons are impaired. Thus oxidative damage to mtDNA of motor neurons may be a significant factor in the etiology of ALS. Over the past decade, an Israeli research group led by Professor Vadim Fraifeld has shown that strong and significant correlations exist between

1482-492: Is data supporting the involvement of helix-distorting intrinsically curved regions and long G-tetrads in eliciting instability events. In addition, higher breakpoint densities were consistently observed within GC-skewed regions and in the close vicinity of the degenerate sequence motif YMMYMNNMMHM. Unlike nuclear DNA, which is inherited from both parents and in which genes are rearranged in the process of recombination , there

1560-571: Is dependent on the inclusion of one or two specific loci in the analyses. One locus, i.e., mitochondrial DNA , contradicts the strict monophyly of Coronaves (Morgan-Richards et al. 2008), but phylogeny reconstruction based on mitochondrial DNA is complicated by the fact that few families have been studied, the sequences are heavily saturated (with back mutations) at deep levels of divergence, and they are plagued by strong base composition bias. The kagu and sunbittern are one another's closest relatives. It had been proposed (Cracraft 2001) that they and

1638-459: Is no exact agreement, with different taxonomists each taking a different position. There are no hard rules that a taxonomist needs to follow in describing or recognizing an order. Some taxa are accepted almost universally, while others are recognized only rarely. The name of an order is usually written with a capital letter. For some groups of organisms, their orders may follow consistent naming schemes . Orders of plants , fungi , and algae use

SECTION 20

#1732780384826

1716-514: Is observed in bivalve mollusks. In those species, females have only one type of mtDNA (F), whereas males have F type mtDNA in their somatic cells, but M type of mtDNA (which can be as much as 30% divergent) in germline cells. Paternally inherited mitochondria have additionally been reported in some insects such as fruit flies , honeybees , and periodical cicadas . An IVF technique known as mitochondrial donation or mitochondrial replacement therapy (MRT) results in offspring containing mtDNA from

1794-540: Is severely degraded. Autosomal cells only have two copies of nuclear DNA, but can have hundreds of copies of mtDNA due to the multiple mitochondria present in each cell. This means highly degraded evidence that would not be beneficial for STR analysis could be used in mtDNA analysis. mtDNA may be present in bones, teeth, or hair, which could be the only remains left in the case of severe degradation. In contrast to STR analysis, mtDNA sequencing uses Sanger sequencing . The known sequence and questioned sequence are both compared to

1872-485: Is the first multicellular organism known to have this absence of aerobic respiration and live completely free of oxygen dependency. There are three different mitochondrial genome types in plants and fungi. The first type is a circular genome that has introns (type 2) and may range from 19 to 1000 kbp in length. The second genome type is a circular genome (about 20–1000 kbp) that also has a plasmid-like structure (1 kb) (type 3). The final genome type found in plants and fungi

1950-452: Is used in an analogous way to determine the patrilineal history.) This is usually accomplished on human mitochondrial DNA by sequencing the hypervariable control regions (HVR1 or HVR2), and sometimes the complete molecule of the mitochondrial DNA, as a genealogical DNA test . HVR1, for example, consists of about 440 base pairs. These 440 base pairs are compared to the same regions of other individuals (either specific people or subjects in

2028-510: Is usually no change in mtDNA from parent to offspring. Although mtDNA also recombines, it does so with copies of itself within the same mitochondrion. Because of this and because the mutation rate of animal mtDNA is higher than that of nuclear DNA, mtDNA is a powerful tool for tracking ancestry through females ( matrilineage ) and has been used in this role to track the ancestry of many species back hundreds of generations. mtDNA testing can be used by forensic scientists in cases where nuclear DNA

2106-521: The POLG2 gene. The replisome machinery is formed by DNA polymerase, TWINKLE and mitochondrial SSB proteins . TWINKLE is a helicase , which unwinds short stretches of dsDNA in the 5' to 3' direction. All these polypeptides are encoded in the nuclear genome. During embryogenesis , replication of mtDNA is strictly down-regulated from the fertilized oocyte through the preimplantation embryo. The resulting reduction in per-cell copy number of mtDNA plays

2184-659: The Prodromus Systematis Naturalis Regni Vegetabilis of Augustin Pyramus de Candolle and the Genera Plantarum of Bentham & Hooker, it indicated taxa that are now given the rank of family (see ordo naturalis , ' natural order '). In French botanical publications, from Michel Adanson 's Familles naturelles des plantes (1763) and until the end of the 19th century, the word famille (plural: familles )

2262-518: The ciliate Tetrahymena and the green alga Chlamydomonas reinhardtii ), and in rare cases also in multicellular organisms (e.g. in some species of Cnidaria ), the mtDNA is linear DNA . Most of these linear mtDNAs possess telomerase -independent telomeres (i.e., the ends of the linear DNA ) with different modes of replication, which have made them interesting objects of research because many of these unicellular organisms with linear mtDNA are known pathogens . Most ( bilaterian ) animals have

2340-499: The endosymbiotic theory . In the cells of extant organisms, the vast majority of the proteins in the mitochondria (numbering approximately 1500 different types in mammals ) are coded by nuclear DNA , but the genes for some, if not most, of them are thought to be of bacterial origin, having been transferred to the eukaryotic nucleus during evolution . The reasons mitochondria have retained some genes are debated. The existence in some species of mitochondrion-derived organelles lacking

2418-487: The DNA also is found in plastids , such as chloroplasts . Human mitochondrial DNA was the first significant part of the human genome to be sequenced. This sequencing revealed that human mtDNA has 16,569 base pairs and encodes 13 proteins . As in other vertebrates, the human mitochondrial genetic code differs slightly from nuclear DNA. Since animal mtDNA evolves faster than nuclear genetic markers, it represents

Gruiformes - Misplaced Pages Continue

2496-468: The Gruiformes based on large DNA–DNA hybridization distances to other supposed Gruiformes. However, it was not until the work of Paton et al. (2004) and Fain and Houde (2004, 2006) that the correct placement of buttonquails within the shorebirds (order Charadriiformes) was documented on the basis of phylogenetic analysis of multiple genetic loci. Using 12S ribosomal DNA sequences, Houde et al. (1997) were

2574-445: The Gruiformes, e.g., Ergilornithidae, Phorusrhacidae, Messelornithidae, Eogruidae, Idiornithidae, Bathornithidae, to name just a few (see below). Though some of these are superficially 'crane-like' and the possibility exists that some may even be related to extant families traditionally included in the Gruiformes, there are no completely extinct families that can be confidently assigned to core-Gruiformes. The traditional order Gruiformes

2652-572: The Revised Cambridge Reference Sequence to generate their respective haplotypes. If the known sample sequence and questioned sequence originated from the same matriline, one would expect to see identical sequences and identical differences from the rCRS. Cases arise where there are no known samples to collect and the unknown sequence can be searched in a database such as EMPOP. The Scientific Working Group on DNA Analysis Methods recommends three conclusions for describing

2730-543: The accumulation of deleterious mutations until functionality is lost. Animal populations of mitochondria avoid this through a developmental process known as the mtDNA bottleneck . The bottleneck exploits random processes in the cell to increase the cell-to-cell variability in mutant load as an organism develops: a single egg cell with some proportion of mutant mtDNA thus produces an embryo in which different cells have different mutant loads. Cell-level selection may then act to remove those cells with more mutant mtDNA, leading to

2808-419: The accumulation of mtDNA damage in several organs of rats. For example, dietary restriction prevented age-related accumulation of mtDNA damage in the cortex and decreased it in the lung and testis. Increased mt DNA damage is a feature of several neurodegenerative diseases . The brains of individuals with Alzheimer's disease have elevated levels of oxidative DNA damage in both nuclear DNA and mtDNA, but

2886-767: The birds traditionally classified as Gruiformes. Rails ( Rallidae ), flufftails ( Sarothruridae ), finfoots and sungrebe ( Heliornithidae ), adzebills ( Aptornithidae ), trumpeters ( Psophiidae ), limpkin ( Aramidae ), and cranes ( Gruidae ) compose the suborder Grues and are termed "core-Gruiformes". These are the only true Gruiformes. The suborder Eurypygae includes the kagu (Rhynochetidae) and sunbittern (Eurypygidae). These are not even remotely related to Grues. The families of mesites or roatelos ( Mesitornithidae ), button-quails ( Turnicidae ), Australian plains-wanderer ( Pedionomidae ), seriemas ( Cariamidae ), and bustards ( Otididae ) each represent distinct and unrelated lineages. Many families known only from fossils have been assigned to

2964-456: The coding instructions for some proteins, which may have an effect on organism metabolism and/or fitness. Mutations of mitochondrial DNA can lead to a number of illnesses including exercise intolerance and Kearns–Sayre syndrome (KSS), which causes a person to lose full function of heart, eye, and muscle movements. Some evidence suggests that they might be major contributors to the aging process and age-associated pathologies . Particularly in

3042-434: The comb jelly Vallicula multiformis , which consist of 9,961 bp. In February 2020, a jellyfish-related parasite – Henneguya salminicola – was discovered that lacks a mitochondrial genome but retains structures deemed mitochondrion-related organelles. Moreover, nuclear DNA genes involved in aerobic respiration and in mitochondrial DNA replication and transcription were either absent or present only as pseudogenes . This

3120-718: The context of disease, the proportion of mutant mtDNA molecules in a cell is termed heteroplasmy . The within-cell and between-cell distributions of heteroplasmy dictate the onset and severity of disease and are influenced by complicated stochastic processes within the cell and during development. Mutations in mitochondrial tRNAs can be responsible for severe diseases like the MELAS and MERRF syndromes. Mutations in nuclear genes that encode proteins that mitochondria use can also contribute to mitochondrial diseases. These diseases do not follow mitochondrial inheritance patterns, but instead follow Mendelian inheritance patterns. Recently

3198-403: The differences between a known mtDNA sequence and a questioned mtDNA sequence: exclusion for two or more differences between the sequences, inconclusive if there is one nucleotide difference, or cannot exclude if there are no nucleotide differences between the two sequences. The rapid mutation rate (in animals) makes mtDNA useful for assessing genetic relationships of individuals or groups within

Gruiformes - Misplaced Pages Continue

3276-626: The differences in animal species maximum life spans in a multiplicative manner (i.e., species maximum life span = their mtDNA GC% * metabolic rate). To support the scientific community in carrying out comparative analyses between mtDNA features and longevity across animals, a dedicated database was built named MitoAge . De novo mutations arise either due to mistakes during DNA replication or due to unrepaired damage caused in turn by endogenous and exogenous mutagens. It has been long believed that mtDNA can be particularly sensitive to damage caused by reactive oxygen species (ROS), however G>T substitutions,

3354-472: The ending -anae that was initiated by Armen Takhtajan 's publications from 1966 onwards. The order as a distinct rank of biological classification having its own distinctive name (and not just called a higher genus ( genus summum )) was first introduced by the German botanist Augustus Quirinus Rivinus in his classification of plants that appeared in a series of treatises in the 1690s. Carl Linnaeus

3432-910: The field of zoology , the Linnaean orders were used more consistently. That is, the orders in the zoology part of the Systema Naturae refer to natural groups. Some of his ordinal names are still in use, e.g. Lepidoptera (moths and butterflies) and Diptera (flies, mosquitoes, midges, and gnats). In virology , the International Committee on Taxonomy of Viruses 's virus classification includes fifteen taxomomic ranks to be applied for viruses , viroids and satellite nucleic acids : realm , subrealm , kingdom , subkingdom, phylum , subphylum , class, subclass, order, suborder, family, subfamily , genus, subgenus , and species. There are currently fourteen viral orders, each ending in

3510-500: The first to present molecular genetic evidence of gruiform polyphyly , although apparently they were not convinced by it. However, on the basis of numerous additional sequence data, it has been shown decisively that the traditionally recognized Gruiformes consist of five to seven unrelated clades (Fain and Houde 2004, Ericson et al. 2006, Hackett et al. 2008). Fain and Houde (2004) proposed that Neoaves are divisible into two clades, Metaves and Coronaves, although it has been suggested from

3588-403: The genetic distances of distantly related species. Statistical models that treat substitution rates among codon positions separately, can thus be used to simultaneously estimate phylogenies that contain both closely and distantly related species Mitochondrial DNA was admitted into evidence for the first time ever in a United States courtroom in 1996 during State of Tennessee v. Paul Ware . In

3666-477: The hallmark of the oxidative damage in the nuclear genome, are very rare in mtDNA and do not increase with age. Comparing the mtDNA mutational spectra of hundreds of mammalian species, it has been recently demonstrated that species with extended lifespans have an increased rate of A>G substitutions on single-stranded heavy chain. This discovery led to the hypothesis that A>G is a mitochondria-specific marker of age-associated oxidative damage. This finding provides

3744-421: The human mitochondrial DNA are distinguished as the heavy strand and the light strand. The heavy strand is rich in guanine and encodes 12 subunits of the oxidative phosphorylation system, two ribosomal RNAs (12S and 16S), and 14 transfer RNAs (tRNAs). The light strand encodes one subunit, and 8 tRNAs. So, altogether mtDNA encodes for two rRNAs, 22 tRNAs, and 13 protein subunits , all of which are involved in

3822-524: The idea is controversial, some evidence suggests a link between aging and mitochondrial genome dysfunction. In essence, mutations in mtDNA upset a careful balance of reactive oxygen species (ROS) production and enzymatic ROS scavenging (by enzymes like superoxide dismutase , catalase , glutathione peroxidase and others). However, some mutations that increase ROS production (e.g., by reducing antioxidant defenses) in worms increase, rather than decrease, their longevity. Also, naked mole rats , rodents about

3900-466: The initiation of the transcription of the heavy and light strands are located in the main non-coding region of the mtDNA called the displacement loop, the D-loop . There is evidence that the transcription of the mitochondrial rRNAs is regulated by the heavy-strand promoter 1 (HSP1), and the transcription of the polycistronic transcripts coding for the protein subunits are regulated by HSP2. Measurement of

3978-445: The known families and that may occupy a more basal position: Other even more enigmatic fossil birds and five living families are occasionally suggested to belong into this order, such as the proposed Late Cretaceous family Laornithidae and the following taxa: Order (biology) What does and does not belong to each order is determined by a taxonomist , as is whether a particular order should be recognized at all. Often there

SECTION 50

#1732780384826

4056-415: The levels of the mtDNA-encoded RNAs in bovine tissues has shown that there are major differences in the expression of the mitochondrial RNAs relative to total tissue RNA. Among the 12 tissues examined the highest level of expression was observed in heart, followed by brain and steroidogenic tissue samples. As demonstrated by the effect of the trophic hormone ACTH on adrenal cortex cells, the expression of

4134-443: The longevity of species. The application of a mitochondrial-specific ROS scavenger, which lead to a significant longevity of the mice studied, suggests that mitochondria may still be well-implicated in ageing. Extensive research is being conducted to further investigate this link and methods to combat ageing. Presently, gene therapy and nutraceutical supplementation are popular areas of ongoing research. Bjelakovic et al. analyzed

4212-424: The male-inherited mitochondria were subsequently rejected. It has also been found in sheep, and in cloned cattle. Rare cases of male mitochondrial inheritance have been documented in humans. Although many of these cases involve cloned embryos or subsequent rejection of the paternal mitochondria, others document in vivo inheritance and persistence under lab conditions. Doubly uniparental inheritance of mtDNA

4290-525: The mitochondrial genes may be strongly regulated by external factors, apparently to enhance the synthesis of mitochondrial proteins necessary for energy production. Interestingly, while the expression of protein-encoding genes was stimulated by ACTH, the levels of the mitochondrial 16S rRNA showed no significant change. In most multicellular organisms , mtDNA is inherited from the mother (maternally inherited). Mechanisms for this include simple dilution (an egg contains on average 200,000 mtDNA molecules, whereas

4368-480: The mtDNA base composition and animal species-specific maximum life spans. As demonstrated in their work, higher mtDNA guanine + cytosine content ( GC% ) strongly associates with longer maximum life spans across animal species. An additional observation is that the mtDNA GC% correlation with the maximum life spans is independent of the well-known correlation between animal species metabolic rate and maximum life spans. The mtDNA GC% and resting metabolic rate explain

4446-886: The mtDNA has approximately 10-fold higher levels than nuclear DNA. It has been proposed that aged mitochondria is the critical factor in the origin of neurodegeneration in Alzheimer's disease. Analysis of the brains of AD patients suggested an impaired function of the DNA repair pathway, which would cause reduce the overall quality of mtDNA. In Huntington's disease , mutant huntingtin protein causes mitochondrial dysfunction involving inhibition of mitochondrial electron transport , higher levels of reactive oxygen species and increased oxidative stress . Mutant huntingtin protein promotes oxidative damage to mtDNA, as well as nuclear DNA, that may contribute to Huntington's disease pathology . The DNA oxidation product 8-oxoguanine (8-oxoG)

4524-558: The mtDNAs were taken. mtDNA can be used to estimate the relationship between both closely related and distantly related species. Due to the high mutation rate of mtDNA in animals, the 3rd positions of the codons change relatively rapidly, and thus provide information about the genetic distances among closely related individuals or species. On the other hand, the substitution rate of mt-proteins is very low, thus amino acid changes accumulate slowly (with corresponding slow changes at 1st and 2nd codon positions) and thus they provide information about

4602-472: The nucleus. mtDNA is packaged with proteins which appear to be as protective as proteins of the nuclear chromatin. Moreover, mitochondria evolved a unique mechanism which maintains mtDNA integrity through degradation of excessively damaged genomes followed by replication of intact/repaired mtDNA. This mechanism is not present in the nucleus and is enabled by multiple copies of mtDNA present in mitochondria. The outcome of mutation in mtDNA may be an alteration in

4680-487: The oxidative phosphorylation process. Between most (but not all) protein-coding regions, tRNAs are present (see the human mitochondrial genome map ). During transcription, the tRNAs acquire their characteristic L-shape that gets recognized and cleaved by specific enzymes. With the mitochondrial RNA processing, individual mRNA, rRNA, and tRNA sequences are released from the primary transcript. Folded tRNAs therefore act as secondary structure punctuations. The promoters for

4758-466: The plant and fungal genomes also exist in some protists, as do two unique genome types. One of these unique types is a heterogeneous collection of circular DNA molecules (type 4) while the other is a heterogeneous collection of linear molecules (type 6). Genome types 4 and 6 each range from 1–200 kbp in size. The smallest mitochondrial genome sequenced to date is the 5,967 bp mtDNA of the parasite Plasmodium falciparum . Endosymbiotic gene transfer,

SECTION 60

#1732780384826

4836-499: The process by which genes that were coded in the mitochondrial genome are transferred to the cell's main genome, likely explains why more complex organisms such as humans have smaller mitochondrial genomes than simpler organisms such as protists. Mitochondrial DNA is replicated by the DNA polymerase gamma complex which is composed of a 140 kDa catalytic DNA polymerase encoded by the POLG gene and two 55 kDa accessory subunits encoded by

4914-799: The recently extinct adzebills (family Aptornithidae) from New Zealand constitute a distinct Gondwanan lineage. However, sunbittern and kagu are believed to have diverged from one another long after the break-up of Gondwanaland and the adzebills are in fact members of the Grues (Houde et al. 1997, Houde 2009). The seriemas and bustards represent distinct lineages within neoavian waterbirds. Psophiidae – trumpeters (3 species) Aramidae – limpkin Gruidae – cranes (15 species) Rallidae – rails, crakes and coots (152 species) Heliornithidae – finfoots (3 species) Sarothruridae – flufftails (15 species) Gruiformes When considered to be monophyletic, it

4992-409: The results of 78 studies between 1977 and 2012, involving a total of 296,707 participants, and concluded that antioxidant supplements do not reduce all-cause mortality nor extend lifespan, while some of them, such as beta carotene, vitamin E, and higher doses of vitamin A, may actually increase mortality. In a recent study, it was shown that dietary restriction can reverse ageing alterations by affecting

5070-442: The same number and kinds of genes as related plants with much smaller mtDNAs. The genome of the mitochondrion of the cucumber ( Cucumis sativus ) consists of three circular chromosomes (lengths 1556, 84 and 45 kilobases), which are entirely or largely autonomous with regard to their replication . Protists contain the most diverse mitochondrial genomes, with five different types found in this kingdom. Type 2, type 3 and type 5 of

5148-420: The same position. Michael Benton (2005) inserted them between superorder and magnorder instead. This position was adopted by Systema Naturae 2000 and others. In botany , the ranks of subclass and suborder are secondary ranks pre-defined as respectively above and below the rank of order. Any number of further ranks can be used as long as they are clearly defined. The superorder rank is commonly used, with

5226-500: The size of mice , live about eight times longer than mice despite having reduced, compared to mice, antioxidant defenses and increased oxidative damage to biomolecules. Once, there was thought to be a positive feedback loop at work (a 'Vicious Cycle'); as mitochondrial DNA accumulates genetic damage caused by free radicals, the mitochondria lose function and leak free radicals into the cytosol . A decrease in mitochondrial function reduces overall metabolic efficiency. However, this concept

5304-538: The start that Metaves may be paraphyletic (Fain and Houde 2004, Ericson et al. 2006, Hackett et al. 2008). Sunbittern, kagu, and mesites all group within Metaves but all the other lineages of "Gruiformes" group either with a collection of waterbirds or landbirds within Coronaves. This division has been upheld by the combined analysis of as many as 30 independent loci (Ericson et al. 2006, Hackett et al. 2008), but

5382-777: The suffix -ales (e.g. Dictyotales ). Orders of birds and fishes use the Latin suffix -iformes meaning 'having the form of' (e.g. Passeriformes ), but orders of mammals and invertebrates are not so consistent (e.g. Artiodactyla , Actiniaria , Primates ). For some clades covered by the International Code of Zoological Nomenclature , several additional classifications are sometimes used, although not all of these are officially recognized. In their 1997 classification of mammals , McKenna and Bell used two extra levels between superorder and order: grandorder and mirorder . Michael Novacek (1986) inserted them at

5460-403: The suffix -virales . Mitochondrial DNA Mitochondrial DNA ( mtDNA and mDNA ) is the DNA located in the mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of the DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus , and, in plants and algae,

5538-505: The traditional Gruiformes. They recognized that the Australian plains-wanderer (family Pedionomidae) was actually a member of the shorebirds (order Charadriiformes) based on skeletal characters. This was confirmed by Sibley and Ahlquist (1990) based on DNA–DNA hybridization and subsequently by Paton et al. (2003), Paton and Baker (2006) and Fain and Houde (2004, 2006). Sibley and Ahlquist furthermore removed button-quails (Turnicidae) from

5616-578: The word family ( familia ) was assigned to the rank indicated by the French famille , while order ( ordo ) was reserved for a higher rank, for what in the 19th century had often been named a cohors (plural cohortes ). Some of the plant families still retain the names of Linnaean "natural orders" or even the names of pre-Linnaean natural groups recognized by Linnaeus as orders in his natural classification (e.g. Palmae or Labiatae ). Such names are known as descriptive family names. In

5694-479: Was assumed that Gruiformes was among the more ancient of avian lineages. The divergence of "gruiforms" among "Metaves" and "Coronaves" is proposed to be the first divergence among Neoaves, far predating the Cretaceous–Paleogene extinction event c. 66 mya (Houde 2009). No unequivocal basal gruiforms are known from the fossil record. However, there are several genera that are not unequivocally assignable to

5772-410: Was conclusively disproved when it was demonstrated that mice, which were genetically altered to accumulate mtDNA mutations at accelerated rate do age prematurely, but their tissues do not produce more ROS as predicted by the 'Vicious Cycle' hypothesis. Supporting a link between longevity and mitochondrial DNA, some studies have found correlations between biochemical properties of the mitochondrial DNA and

5850-451: Was established by the influential German avian comparative anatomist Max Fürbringer (1888). Over the decades, many ornithologists suggested that members of the order were in fact more closely related to other groups (reviewed by Olson 1985, Sibley and Ahlquist 1990). For example, it was thought that sunbittern might be related to herons and that seriemas might be related to cuckoos. Olson and Steadman (1981) were first to correctly disband any of

5928-460: Was reported that paternal sperm mitochondria (containing mtDNA) are marked with ubiquitin to select them for later destruction inside the embryo . Some in vitro fertilization techniques, particularly injecting a sperm into an oocyte , may interfere with this. The fact that mitochondrial DNA is mostly maternally inherited enables genealogical researchers to trace maternal lineage far back in time. ( Y-chromosomal DNA , paternally inherited,

6006-551: Was the first to apply it consistently to the division of all three kingdoms of nature (then minerals , plants , and animals ) in his Systema Naturae (1735, 1st. Ed.). For plants, Linnaeus' orders in the Systema Naturae and the Species Plantarum were strictly artificial, introduced to subdivide the artificial classes into more comprehensible smaller groups. When the word ordo was first consistently used for natural units of plants, in 19th-century works such as

6084-561: Was used as a French equivalent for this Latin ordo . This equivalence was explicitly stated in the Alphonse Pyramus de Candolle 's Lois de la nomenclature botanique (1868), the precursor of the currently used International Code of Nomenclature for algae, fungi, and plants . In the first international Rules of botanical nomenclature from the International Botanical Congress of 1905,

#825174