Misplaced Pages

Kalkkögel

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Kalkkögel are a mountain chain that is part of the Stubai Alps in Tyrol , Austria . The highest point of the Kalkkögel is the Schlicker Seespitze which reaches a height of 2,804  m (AA) ; its easternmost mountain is the Ampferstein . The name is plural.

#761238

107-828: The Kalkkögel consist of Mesozoic sediments , like those that occur elsewhere in the Stubai Alps, west of the Wipptal valley, around the Serles crest or in the area of the Tribulaune . In the region of the Kalkkögel, there are sediments from the boundary of the Permian - Triassic to the Norian of the upper Triassic, which lie on its crystalline bedrock. For the most part, however, these sediments consist of dolomites of

214-471: A jigsaw puzzle . Rocks normally form relatively horizontal layers, with each layer younger than the one underneath it. If a fossil is found between two layers whose ages are known, the fossil's age must lie between the two known ages. Because rock sequences are not continuous, but may be broken up by faults or periods of erosion , it is very difficult to match up rock beds that are not directly next to one another. However, fossils of species that survived for

321-483: A boom of dinosaurian evolution on land as the continents began to separate from each other (Nyasasaurus from 243 to 210 million years ago, approximately 235–30 ma, some of them separated into Sauropodomorphs, Theropods and Herrerasaurids), as well as the first pterosaurs . During the Late Triassic, some advanced cynodonts gave rise to the first Mammaliaformes . All this climatic change, however, resulted in

428-594: A coating. This contrasts with the earth's current flora, in which the dominant land plants in terms of number of species are angiosperms . The earliest members of the genus Ginkgo first appeared during the Middle Jurassic. This genus is represented today by a single species, Ginkgo biloba . Modern conifer groups began to radiate during the Jurassic. Bennettitales , an extinct group of gymnosperms with foliage superficially resembling that of cycads gained

535-552: A collision that formed the Moon about 40 million years later, may have cooled quickly enough to have oceans and an atmosphere about 4,440  million years ago . There is evidence on the Moon of a Late Heavy Bombardment by asteroids from 4,000 to 3,800 million years ago . If, as seems likely, such a bombardment struck Earth at the same time, the first atmosphere and oceans may have been stripped away. Paleontology traces

642-602: A common ancestor. Ideally the "family tree" has only two branches leading from each node ("junction"), but sometimes there is too little information to achieve this, and paleontologists have to make do with junctions that have several branches. The cladistic technique is sometimes fallible, as some features, such as wings or camera eyes , evolved more than once, convergently  – this must be taken into account in analyses. Evolutionary developmental biology , commonly abbreviated to "Evo Devo", also helps paleontologists to produce "family trees", and understand fossils. For example,

749-456: A constant rate. These " molecular clocks ", however, are fallible, and provide only a very approximate timing: for example, they are not sufficiently precise and reliable for estimating when the groups that feature in the Cambrian explosion first evolved, and estimates produced by different techniques may vary by a factor of two. Earth formed about 4,570  million years ago and, after

856-403: A data source that is not limited to animals with easily fossilised hard parts, and they reflect organisms' behaviours. Also many traces date from significantly earlier than the body fossils of animals that are thought to have been capable of making them. Whilst exact assignment of trace fossils to their makers is generally impossible, traces may for example provide the earliest physical evidence of

963-600: A decline in diversity of sauropods, stegosaurs, and other high-browsing groups, with sauropods particularly scarce in North America. Some island-hopping dinosaurs, such as Eustreptospondylus , evolved to cope with the coastal shallows and small islands of ancient Europe. Other dinosaurs rose up to fill the empty space that the Jurassic-Cretaceous extinction left behind, such as Carcharodontosaurus and Spinosaurus . Seasons came back into effect and

1070-477: A few million years before the Triassic–Jurassic extinction event. Sea levels began to rise during the Jurassic, probably caused by an increase in seafloor spreading . The formation of new crust beneath the surface displaced ocean waters by as much as 200 m (656 ft) above today's sea level, flooding coastal areas. Furthermore, Pangaea began to rift into smaller divisions, creating new shoreline around

1177-573: A fortunate accident during other research. For example, the 1980 discovery by Luis and Walter Alvarez of iridium , a mainly extraterrestrial metal, in the Cretaceous – Paleogene boundary layer made asteroid impact the most favored explanation for the Cretaceous–Paleogene extinction event – although debate continues about the contribution of volcanism. A complementary approach to developing scientific knowledge, experimental science ,

SECTION 10

#1732786813762

1284-483: A global distribution during the Late Triassic, and represented one of the most common groups of Mesozoic seed plants. Flowering plants radiated during the early Cretaceous, first in the tropics , but the even temperature gradient allowed them to spread toward the poles throughout the period. By the end of the Cretaceous, angiosperms dominated tree floras in many areas, although some evidence suggests that biomass

1391-671: A large die-out known as the Triassic–Jurassic extinction event, in which many archosaurs (excluding pterosaurs, dinosaurs and crocodylomorphs ), most synapsids , and almost all large amphibians became extinct, as well as 34% of marine life, in the Earth's fourth mass extinction event. The cause is debatable; flood basalt eruptions at the Central Atlantic magmatic province is cited as one possible cause. The Jurassic ranges from 200 million years to 145 million years ago and features three major epochs: The Early Jurassic,

1498-821: A minor group until the first jawed fish appeared in the Late Ordovician . The spread of animals and plants from water to land required organisms to solve several problems, including protection against drying out and supporting themselves against gravity . The earliest evidence of land plants and land invertebrates date back to about 476  million years ago and 490  million years ago respectively. Those invertebrates, as indicated by their trace and body fossils, were shown to be arthropods known as euthycarcinoids . The lineage that produced land vertebrates evolved later but very rapidly between 370  million years ago and 360  million years ago ; recent discoveries have overturned earlier ideas about

1605-555: A rapid increase in knowledge about the history of life on Earth and to progress in the definition of the geologic time scale , largely based on fossil evidence. Although she was rarely recognised by the scientific community, Mary Anning was a significant contributor to the field of palaeontology during this period; she uncovered multiple novel Mesozoic reptile fossils and deducted that what were then known as bezoar stones are in fact fossilised faeces . In 1822 Henri Marie Ducrotay de Blainville , editor of Journal de Physique , coined

1712-543: A relatively short time can be used to link up isolated rocks: this technique is called biostratigraphy . For instance, the conodont Eoplacognathus pseudoplanus has a short range in the Middle Ordovician period. If rocks of unknown age are found to have traces of E. pseudoplanus , they must have a mid-Ordovician age. Such index fossils must be distinctive, be globally distributed and have a short time range to be useful. However, misleading results are produced if

1819-608: A steady increase in brain size after about 3  million years ago . There is a long-running debate about whether modern humans are descendants of a single small population in Africa , which then migrated all over the world less than 200,000 years ago and replaced previous hominine species, or arose worldwide at the same time as a result of interbreeding . Life on earth has suffered occasional mass extinctions at least since 542  million years ago . Despite their disastrous effects, mass extinctions have sometimes accelerated

1926-435: A variety of niches, beginning in the mid-Triassic 4 million to 6 million years after the extinction, and not fully proliferated until 30 million years after the extinction. Animal life was then dominated by various archosaurs: dinosaurs , pterosaurs, and aquatic reptiles such as ichthyosaurs, plesiosaurs, and mosasaurs . The climatic changes of the late Jurassic and Cretaceous favored further adaptive radiation. The Jurassic

2033-595: Is composed only of eukaryotic cells, and the earliest evidence for it is the Francevillian Group Fossils from 2,100  million years ago , although specialisation of cells for different functions first appears between 1,430  million years ago (a possible fungus) and 1,200  million years ago (a probable red alga ). Sexual reproduction may be a prerequisite for specialisation of cells, as an asexual multicellular organism might be at risk of being taken over by rogue cells that retain

2140-482: Is hard to decide at what level to place a new higher-level grouping, e.g. genus or family or order ; this is important since the Linnaean rules for naming groups are tied to their levels, and hence if a group is moved to a different level it must be renamed. Paleontologists generally use approaches based on cladistics , a technique for working out the evolutionary "family tree" of a set of organisms. It works by

2247-443: Is often said to work by conducting experiments to disprove hypotheses about the workings and causes of natural phenomena. This approach cannot prove a hypothesis, since some later experiment may disprove it, but the accumulation of failures to disprove is often compelling evidence in favor. However, when confronted with totally unexpected phenomena, such as the first evidence for invisible radiation , experimental scientists often use

SECTION 20

#1732786813762

2354-594: Is one that contained an extinct "crocodile-like" marine reptile, which eventually came to be known as the mosasaurid Mosasaurus of the Cretaceous period. The first half of the 19th century saw geological and paleontological activity become increasingly well organised with the growth of geologic societies and museums and an increasing number of professional geologists and fossil specialists. Interest increased for reasons that were not purely scientific, as geology and paleontology helped industrialists to find and exploit natural resources such as coal. This contributed to

2461-401: Is our only means of giving rocks greater than about 50 million years old an absolute age, and can be accurate to within 0.5% or better. Although radiometric dating requires very careful laboratory work, its basic principle is simple: the rates at which various radioactive elements decay are known, and so the ratio of the radioactive element to the element into which it decays shows how long ago

2568-456: Is the scientific study of life that existed prior to the start of the Holocene epoch (roughly 11,700 years before present). It includes the study of fossils to classify organisms and study their interactions with each other and their environments (their paleoecology ). Paleontological observations have been documented as far back as the 5th century BC. The science became established in

2675-537: Is thought that a large meteor smashed into earth 66 million years ago, creating the Chicxulub Crater in an event known as the K-Pg Extinction (formerly K-T), the fifth and most recent mass extinction event, in which 75% of life became extinct, including all non-avian dinosaurs. Compared to the vigorous convergent plate mountain-building of the late Paleozoic, Mesozoic tectonic deformation

2782-503: Is thought to have been propelled by coevolution with pollinating insects. Social insects appeared around the same time and, although they account for only small parts of the insect "family tree", now form over 50% of the total mass of all insects. Humans evolved from a lineage of upright-walking apes whose earliest fossils date from over 6  million years ago . Although early members of this lineage had chimp -sized brains, about 25% as big as modern humans', there are signs of

2889-607: The Cenozoic . The era began in the wake of the Permian–Triassic extinction event , the largest mass extinction in Earth's history, and ended with the Cretaceous–Paleogene extinction event , another mass extinction whose victims included the non-avian dinosaurs , pterosaurs , mosasaurs , and plesiosaurs . The Mesozoic was a time of significant tectonic, climatic, and evolutionary activity. The supercontinent Pangaea began to break apart into separate landmasses. The climate of

2996-704: The Greek prefix meso- ( μεσο- 'between') and zōon ( ζῷον 'animal, living being'). In this way, the Mesozoic is comparable to the Cenozoic ( lit.   ' new life ' ) and Paleozoic ('old life') eras as well as the Proterozoic ('earlier life') Eon. The Mesozoic Era was originally described as the "secondary" era, following the "primary" ( Paleozoic ), and preceding the Tertiary . Following

3103-711: The Indian subcontinent , which collided with the Asian plate during the Cenozoic, giving rise to the Himalayas . The Triassic was generally dry, a trend that began in the late Carboniferous , and highly seasonal, especially in the interior of Pangaea. Low sea levels may have also exacerbated temperature extremes. With its high specific heat capacity , water acts as a temperature-stabilizing heat reservoir, and land areas near large bodies of water—especially oceans—experience less variation in temperature. Because much of Pangaea's land

3210-582: The Middle Ages the Persian naturalist Ibn Sina , known as Avicenna in Europe, discussed fossils and proposed a theory of petrifying fluids on which Albert of Saxony elaborated in the 14th century. The Chinese naturalist Shen Kuo (1031–1095) proposed a theory of climate change based on the presence of petrified bamboo in regions that in his time were too dry for bamboo. In early modern Europe ,

3317-538: The Neogene - Quaternary . In deeper-level deposits in western Europe are early-aged mammals such as the palaeothere perissodactyl Palaeotherium and the anoplotheriid artiodactyl Anoplotherium , both of which were described earliest after the former two genera, which today are known to date to the Paleogene period. Cuvier figured out that even older than the two levels of deposits with extinct large mammals

Kalkkögel - Misplaced Pages Continue

3424-561: The Permian Period allowed for the radiation of many new lifeforms. In particular, the extinction of the large herbivorous pareiasaurs and carnivorous gorgonopsians left those ecological niches empty. Some were filled by the surviving cynodonts and dicynodonts , the latter of which subsequently became extinct. Recent research indicates that it took much longer for the reestablishment of complex ecosystems with high biodiversity, complex food webs, and specialized animals in

3531-579: The Permian–Triassic extinction event . Amphibians Extinct Synapsids Mammals Extinct reptiles Lizards and snakes Extinct Archosaurs Crocodilians Extinct Dinosaurs Birds Naming groups of organisms in a way that is clear and widely agreed is important, as some disputes in paleontology have been based just on misunderstandings over names. Linnaean taxonomy is commonly used for classifying living organisms, but runs into difficulties when dealing with newly discovered organisms that are significantly different from known ones. For example: it

3638-516: The Permian–Triassic extinction event . A relatively recent discipline, molecular phylogenetics , compares the DNA and RNA of modern organisms to re-construct the "family trees" of their evolutionary ancestors. It has also been used to estimate the dates of important evolutionary developments, although this approach is controversial because of doubts about the reliability of the " molecular clock ". Techniques from engineering have been used to analyse how

3745-516: The Triassic , Jurassic and Cretaceous Periods . It is characterized by the dominance of gymnosperms such as cycads , ginkgoaceae and araucarian conifers, and of archosaurian reptiles such as the dinosaurs ; a hot greenhouse climate; and the tectonic break-up of Pangaea . The Mesozoic is the middle of the three eras since complex life evolved : the Paleozoic , the Mesozoic, and

3852-454: The embryological development of some modern brachiopods suggests that brachiopods may be descendants of the halkieriids , which became extinct in the Cambrian period. Paleontology seeks to map out how living things have changed through time. A substantial hurdle to this aim is the difficulty of working out how old fossils are. Beds that preserve fossils typically lack the radioactive elements needed for radiometric dating . This technique

3959-526: The " jigsaw puzzles " of biostratigraphy (arrangement of rock layers from youngest to oldest). Classifying ancient organisms is also difficult, as many do not fit well into the Linnaean taxonomy classifying living organisms, and paleontologists more often use cladistics to draw up evolutionary "family trees". The final quarter of the 20th century saw the development of molecular phylogenetics , which investigates how closely organisms are related by measuring

4066-463: The 18th century as a result of Georges Cuvier 's work on comparative anatomy , and developed rapidly in the 19th century. The term has been used since 1822 formed from Greek παλαιός ( 'palaios' , "old, ancient"), ὄν ( 'on' , ( gen. 'ontos' ), "being, creature"), and λόγος ( 'logos' , "speech, thought, study"). Paleontology lies on the border between biology and geology , but it differs from archaeology in that it excludes

4173-458: The Atlantic seaway, which has grown continually larger until today. The further separation of the continents gave opportunity for the diversification of new dinosaurs. The Cretaceous is the longest period of the Mesozoic, but has only two epochs: Early and Late Cretaceous. The Early Cretaceous spans from 145 to 100 million years ago. The Early Cretaceous saw the expansion of seaways and

4280-778: The Cretaceous–Paleogene extinction event. Approximately 50% of all genera became extinct, including all of the non- avian dinosaurs. The Triassic ranges roughly from 252 million to 201 million years ago, preceding the Jurassic Period. The period is bracketed between the Permian–Triassic extinction event and the Triassic–Jurassic extinction event , two of the " big five ", and it is divided into three major epochs: Early, Middle, and Late Triassic. The Early Triassic, about 252 to 247 million years ago,

4387-555: The Early Cambrian , along with several "weird wonders" that bear little obvious resemblance to any modern animals. There is a long-running debate about whether this Cambrian explosion was truly a very rapid period of evolutionary experimentation; alternative views are that modern-looking animals began evolving earlier but fossils of their precursors have not yet been found, or that the "weird wonders" are evolutionary "aunts" and "cousins" of modern groups. Vertebrates remained

Kalkkögel - Misplaced Pages Continue

4494-411: The Earth's organic and inorganic past". William Whewell (1794–1866) classified paleontology as one of the historical sciences, along with archaeology , geology, astronomy , cosmology , philology and history itself: paleontology aims to describe phenomena of the past and to reconstruct their causes. Hence it has three main elements: description of past phenomena; developing a general theory about

4601-545: The Jurassic, having evolved from a branch of theropod dinosaurs, then true toothless birds appeared in the Cretaceous. The first mammals also appeared during the Mesozoic, but would remain small—less than 15 kg (33 lb)—until the Cenozoic. Flowering plants appeared in the Early Cretaceous and would rapidly diversify through the end of the era, replacing conifers and other gymnosperms ( sensu lato ), such as ginkgoales , cycads and bennettitales as

4708-465: The Late Cretaceous declined for poorly understood reasons, though this might be due to tendencies of the fossil record, as their diversity seems to be much higher than previously thought. Birds became increasingly common and diversified into a variety of enantiornithe and ornithurine forms. Though mostly small, marine hesperornithes became relatively large and flightless, adapted to life in

4815-469: The Mesozoic was varied, alternating between warming and cooling periods. Overall, however, the Earth was hotter than it is today. Dinosaurs first appeared in the Mid-Triassic, and became the dominant terrestrial vertebrates in the Late Triassic or Early Jurassic, occupying this position for about 150 or 135 million years until their demise at the end of the Cretaceous. Archaic birds appeared in

4922-561: The Middle Jurassic, and the Late Jurassic. The Early Jurassic spans from 200 to 175 million years ago. The climate was tropical and much more humid than the Triassic, as a result of the large seas appearing between the land masses. In the oceans, plesiosaurs , ichthyosaurs and ammonites were abundant. On land, dinosaurs and other archosaurs staked their claim as the dominant race, with theropods such as Dilophosaurus at

5029-628: The Paleozoic, the Mesozoic extended roughly 186 million years, from 251.902 to 66 million years ago when the Cenozoic Era began. This time frame is separated into three geologic periods . From oldest to youngest: The lower boundary of the Mesozoic is set by the Permian–Triassic extinction event , during which it has been estimated that up to 90-96% of marine species became extinct although those approximations have been brought into question with some paleontologists estimating

5136-474: The Tethys Ocean. Temperatures continued to increase, then began to stabilize. Humidity also increased with the proximity of water, and deserts retreated. The climate of the Cretaceous is less certain and more widely disputed. Probably, higher levels of carbon dioxide in the atmosphere are thought to have almost eliminated the north–south temperature gradient : temperatures were about the same across

5243-412: The ability to reproduce. The earliest known animals are cnidarians from about 580  million years ago , but these are so modern-looking that they must be descendants of earlier animals. Early fossils of animals are rare because they had not developed mineralised , easily fossilized hard parts until about 548  million years ago . The earliest modern-looking bilaterian animals appear in

5350-540: The actual numbers as low as 81%. It is also known as the "Great Dying" because it is considered the largest mass extinction in the Earth's history. The upper boundary of the Mesozoic is set at the Cretaceous–Paleogene extinction event (or K–Pg extinction event ), which may have been caused by an asteroid impactor that created Chicxulub Crater on the Yucatán Peninsula . Towards the Late Cretaceous, large volcanic eruptions are also believed to have contributed to

5457-515: The appearance of moderately complex animals (comparable to earthworms ). Geochemical observations may help to deduce the global level of biological activity at a certain period, or the affinity of certain fossils. For example, geochemical features of rocks may reveal when life first arose on Earth, and may provide evidence of the presence of eukaryotic cells, the type from which all multicellular organisms are built. Analyses of carbon isotope ratios may help to explain major transitions such as

SECTION 50

#1732786813762

5564-625: The atmosphere increased their effectiveness as nurseries of evolution. While eukaryotes , cells with complex internal structures, may have been present earlier, their evolution speeded up when they acquired the ability to transform oxygen from a poison to a powerful source of metabolic energy. This innovation may have come from primitive eukaryotes capturing oxygen-powered bacteria as endosymbionts and transforming them into organelles called mitochondria . The earliest evidence of complex eukaryotes with organelles (such as mitochondria) dates from 1,850  million years ago . Multicellular life

5671-521: The beginnings of the breakup of Pangaea and the opening of the Tethys Ocean . Ecosystems had recovered from the Permian extinction. Algae, sponge, corals, and crustaceans all had recovered, and new aquatic reptiles evolved, such as ichthyosaurs and nothosaurs . On land, pine forests flourished, as did groups of insects such as mosquitoes and fruit flies. Reptiles began to get bigger and bigger, and

5778-415: The bodies of ancient organisms might have worked, for example the running speed and bite strength of Tyrannosaurus , or the flight mechanics of Microraptor . It is relatively commonplace to study the internal details of fossils using X-ray microtomography . Paleontology, biology, archaeology, and paleoneurobiology combine to study endocranial casts (endocasts) of species related to humans to clarify

5885-401: The causes of various types of change; and applying those theories to specific facts. When trying to explain the past, paleontologists and other historical scientists often construct a set of one or more hypotheses about the causes and then look for a " smoking gun ", a piece of evidence that strongly accords with one hypothesis over any others. Sometimes researchers discover a "smoking gun" by

5992-763: The characteristics and evolution of humans as a species. When dealing with evidence about humans, archaeologists and paleontologists may work together – for example paleontologists might identify animal or plant fossils around an archaeological site , to discover the people who lived there, and what they ate; or they might analyze the climate at the time of habitation. In addition, paleontology often borrows techniques from other sciences, including biology, osteology , ecology, chemistry , physics and mathematics. For example, geochemical signatures from rocks may help to discover when life first arose on Earth, and analyses of carbon isotope ratios may help to identify climate changes and even to explain major transitions such as

6099-520: The chronological order in which rocks were formed, is useful to both paleontologists and geologists. Biogeography studies the spatial distribution of organisms, and is also linked to geology, which explains how Earth's geography has changed over time. Although paleontology became established around 1800, earlier thinkers had noticed aspects of the fossil record. The ancient Greek philosopher Xenophanes (570–480 BCE) concluded from fossil sea shells that some areas of land were once under water. During

6206-431: The current level (about 21%) throughout the Mesozoic, some concluding they were lower in the Triassic and part of the Jurassic but higher in the Cretaceous, and some concluding they were higher throughout most or all of the Triassic, Jurassic and Cretaceous. The dominant land plant species of the time were gymnosperms , which are vascular, cone-bearing, non-flowering plants such as conifers that produce seeds without

6313-445: The date when lineages first appeared. For instance, if fossils of B or C date to X million years ago and the calculated "family tree" says A was an ancestor of B and C, then A must have evolved more than X million years ago. It is also possible to estimate how long ago two living clades diverged – i.e. approximately how long ago their last common ancestor must have lived – by assuming that DNA mutations accumulate at

6420-535: The dawn of the Mesozoic, ocean plankton communities transitioned from ones dominated by green archaeplastidans to ones dominated by endosymbiotic algae with red-algal-derived plastids. This transition is speculated to have been caused by an increasing paucity of many trace metals in the Mesozoic ocean. Paleontology Paleontology ( / ˌ p eɪ l i ɒ n ˈ t ɒ l ə dʒ i , ˌ p æ l i -, - ən -/ PAY -lee-on- TOL -ə-jee, PAL -ee-, -⁠ən- ), also spelled palaeontology or palæontology ,

6527-594: The development of mammalian traits such as endothermy and hair. After the Cretaceous–Paleogene extinction event 66  million years ago killed off all the dinosaurs except the birds, mammals increased rapidly in size and diversity, and some took to the air and the sea. Fossil evidence indicates that flowering plants appeared and rapidly diversified in the Early Cretaceous between 130  million years ago and 90  million years ago . Their rapid rise to dominance of terrestrial ecosystems

SECTION 60

#1732786813762

6634-561: The development of the body plans of most animal phyla . The discovery of fossils of the Ediacaran biota and developments in paleobiology extended knowledge about the history of life back far before the Cambrian. Increasing awareness of Gregor Mendel 's pioneering work in genetics led first to the development of population genetics and then in the mid-20th century to the modern evolutionary synthesis , which explains evolution as

6741-482: The different levels of deposits represented different time periods in the early 19th century. The surface-level deposits in the Americas contained later mammals like the megatheriid ground sloth Megatherium and the mammutid proboscidean Mammut (later known informally as a "mastodon"), which were some of the earliest-named fossil mammal genera with official taxonomic authorities. They today are known to date to

6848-457: The dominant group of plants. The phrase "Age of Reptiles" was introduced by the 19th century paleontologist Gideon Mantell who viewed it as dominated by diapsids such as Iguanodon , Megalosaurus , Plesiosaurus , and Pterodactylus . The current name was proposed in 1840 by the British geologist John Phillips (1800–1874). "Mesozoic" literally means 'middle life', deriving from

6955-605: The dramatic rifting of the supercontinent Pangaea, which gradually split into a northern continent, Laurasia , and a southern continent, Gondwana . This created the passive continental margin that characterizes most of the Atlantic coastline (such as along the U.S. East Coast ) today. By the end of the era, the continents had rifted into nearly their present forms, though not their present positions. Laurasia became North America and Eurasia , while Gondwana split into South America , Africa , Australia , Antarctica and

7062-409: The end of the 20th century have been particularly important as they have provided new information about the earliest evolution of animals, early fish, dinosaurs and the evolution of birds. The last few decades of the 20th century saw a renewed interest in mass extinctions and their role in the evolution of life on Earth. There was also a renewed interest in the Cambrian explosion that apparently saw

7169-410: The evolution of the human brain. Paleontology even contributes to astrobiology , the investigation of possible life on other planets , by developing models of how life may have arisen and by providing techniques for detecting evidence of life. As knowledge has increased, paleontology has developed specialised subdivisions. Vertebrate paleontology concentrates on fossils from the earliest fish to

7276-466: The evolutionary history of life back to over 3,000  million years ago , possibly as far as 3,800  million years ago . The oldest clear evidence of life on Earth dates to 3,000  million years ago , although there have been reports, often disputed, of fossil bacteria from 3,400  million years ago and of geochemical evidence for the presence of life 3,800  million years ago . Some scientists have proposed that life on Earth

7383-555: The exceptional events that cause quick burial make it difficult to study the normal environments of the animals. The sparseness of the fossil record means that organisms are expected to exist long before and after they are found in the fossil record – this is known as the Signor–Lipps effect . Trace fossils consist mainly of tracks and burrows, but also include coprolites (fossil feces ) and marks left by feeding. Trace fossils are particularly significant because they represent

7490-467: The fern prairies, chased by many new predators such as Allosaurus . Conifer forests made up a large portion of the forests. In the oceans, plesiosaurs were quite common, and ichthyosaurs flourished. This epoch was the peak of the reptiles. The Late Jurassic spans from 163 to 145 million years ago. During this epoch, the first avialans , such as Archaeopteryx , evolved from small coelurosaurian dinosaurs. The increase in sea levels opened up

7597-467: The first crocodilians and dinosaurs evolved, which sparked competition with the large amphibians that had previously ruled the freshwater world, respectively mammal-like reptiles on land. Following the bloom of the Middle Triassic, the Late Triassic, from 237 to 201 million years ago, featured frequent heat spells and moderate precipitation (10–20 inches per year). The recent warming led to

7704-452: The focus of paleontology shifted to understanding evolutionary paths, including human evolution , and evolutionary theory. The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in North America. The trend continued in the 20th century with additional regions of the Earth being opened to systematic fossil collection. Fossils found in China near

7811-449: The following: At the end of the 18th century Georges Cuvier 's work established comparative anatomy as a scientific discipline and, by proving that some fossil animals resembled no living ones, demonstrated that animals could become extinct , leading to the emergence of paleontology. The expanding knowledge of the fossil record also played an increasing role in the development of geology, particularly stratigraphy . Cuvier proved that

7918-487: The food web. In the oceans, mosasaurs ruled, filling the role of the ichthyosaurs, which, after declining, had disappeared in the Cenomanian-Turonian boundary event . Though pliosaurs had gone extinct in the same event, long-necked plesiosaurs such as Elasmosaurus continued to thrive. Flowering plants, possibly appearing as far back as the Triassic, became truly dominant for the first time. Pterosaurs in

8025-432: The fossil record. The Late Cretaceous spans from 100 to 66 million years ago. The Late Cretaceous featured a cooling trend that would continue in the Cenozoic Era. Eventually, tropics were restricted to the equator and areas beyond the tropic lines experienced extreme seasonal changes in weather. Dinosaurs still thrived, as new taxa such as Tyrannosaurus , Ankylosaurus , Triceratops and hadrosaurs dominated

8132-580: The fossil record: different environments are more favorable to the preservation of different types of organism or parts of organisms. Further, only the parts of organisms that were already mineralised are usually preserved, such as the shells of molluscs. Since most animal species are soft-bodied, they decay before they can become fossilised. As a result, although there are 30-plus phyla of living animals, two-thirds have never been found as fossils. Occasionally, unusual environments may preserve soft tissues. These lagerstätten allow paleontologists to examine

8239-633: The history and driving forces behind their evolution. Land plants were so successful that their detritus caused an ecological crisis in the Late Devonian , until the evolution of fungi that could digest dead wood. During the Permian period, synapsids , including the ancestors of mammals , may have dominated land environments, but this ended with the Permian–Triassic extinction event 251  million years ago , which came very close to wiping out all complex life. The extinctions were apparently fairly sudden, at least among vertebrates. During

8346-533: The history of Earth's climate and the mechanisms that have changed it  – which have sometimes included evolutionary developments, for example the rapid expansion of land plants in the Devonian period removed more carbon dioxide from the atmosphere, reducing the greenhouse effect and thus helping to cause an ice age in the Carboniferous period. Biostratigraphy , the use of fossils to work out

8453-542: The immediate ancestors of modern mammals . Invertebrate paleontology deals with fossils such as molluscs , arthropods , annelid worms and echinoderms . Paleobotany studies fossil plants , algae , and fungi. Palynology , the study of pollen and spores produced by land plants and protists , straddles paleontology and botany , as it deals with both living and fossil organisms. Micropaleontology deals with microscopic fossil organisms of all kinds. Instead of focusing on individual organisms, paleoecology examines

8560-434: The index fossils turn out to have longer fossil ranges than first thought. Stratigraphy and biostratigraphy can in general provide only relative dating ( A was before B ), which is often sufficient for studying evolution. However, this is difficult for some time periods, because of the problems involved in matching up rocks of the same age across different continents . Family-tree relationships may also help to narrow down

8667-538: The interactions between different ancient organisms, such as their food chains , and the two-way interactions with their environments.   For example, the development of oxygenic photosynthesis by bacteria caused the oxygenation of the atmosphere and hugely increased the productivity and diversity of ecosystems . Together, these led to the evolution of complex eukaryotic cells, from which all multicellular organisms are built. Paleoclimatology , although sometimes treated as part of paleoecology, focuses more on

8774-463: The internal anatomy of animals that in other sediments are represented only by shells, spines, claws, etc. – if they are preserved at all. However, even lagerstätten present an incomplete picture of life at the time. The majority of organisms living at the time are probably not represented because lagerstätten are restricted to a narrow range of environments, e.g. where soft-bodied organisms can be preserved very quickly by events such as mudslides; and

8881-456: The investigation of evolutionary "family trees" by techniques derived from biochemistry , began to make an impact, particularly when it was proposed that the human lineage had diverged from apes much more recently than was generally thought at the time. Although this early study compared proteins from apes and humans, most molecular phylogenetics research is now based on comparisons of RNA and DNA . Fossils of organisms' bodies are usually

8988-409: The logic that, if groups B and C have more similarities to each other than either has to group A, then B and C are more closely related to each other than either is to A. Characters that are compared may be anatomical , such as the presence of a notochord , or molecular , by comparing sequences of DNA or proteins . The result of a successful analysis is a hierarchy of clades – groups that share

9095-439: The middle and upper Triassic. These dolomites are separated into a lower and upper dolomite by a ten-metre-thick band of slightly metamorphosed slates , the so-called Raibler beds . Although this layer is thin, it produces a clear morphological division. At the bottom of the Mesozoic sediments is a sequence of conglomerates and sandstones . In this layer, which is at most a few tens of metres thick, are iron ore deposits,

9202-619: The most important of which were quarried south of the Burgstall and was the basis of the tool industry in the Stubaital that still exists today. The external appearance of the Kalkkögel resembles the Dolomites , which is why they are often referred to as "North Tyrolean Dolomites". Mesozoic The Mesozoic Era is the era of Earth's geological history , lasting from about 252 to 66 million years ago , comprising

9309-409: The most informative type of evidence. The most common types are wood, bones, and shells. Fossilisation is a rare event, and most fossils are destroyed by erosion or metamorphism before they can be observed. Hence the fossil record is very incomplete, increasingly so further back in time. Despite this, it is often adequate to illustrate the broader patterns of life's history. There are also biases in

9416-459: The open sea. Metatherians and primitive eutherian also became common and even produced large and specialised genera such as Didelphodon and Schowalteria . Still, the dominant mammals were multituberculates, cimolodonts in the north and gondwanatheres in the south. At the end of the Cretaceous, the Deccan traps and other volcanic eruptions were poisoning the atmosphere. As this continued, it

9523-414: The outcome of events such as mutations and horizontal gene transfer , which provide genetic variation , with genetic drift and natural selection driving changes in this variation over time. Within the next few years the role and operation of DNA in genetic inheritance were discovered, leading to what is now known as the "Central Dogma" of molecular biology . In the 1960s molecular phylogenetics ,

9630-437: The planet, and about 10° C higher than today. The circulation of oxygen to the deep ocean may also have been disrupted, preventing the decomposition of large volumes of organic matter, which was eventually deposited as " black shale ". Different studies have come to different conclusions about the amount of oxygen in the atmosphere during different parts of the Mesozoic, with some concluding oxygen levels were lower than

9737-641: The poles got seasonally colder, but some dinosaurs still inhabited the polar forests year round, such as Leaellynasaura and Muttaburrasaurus . The poles were too cold for crocodiles, and became the last stronghold for large amphibians such as Koolasuchus . Pterosaurs got larger as genera such as Tapejara and Ornithocheirus evolved. Mammals continued to expand their range: eutriconodonts produced fairly large, wolverine -like predators such as Repenomamus and Gobiconodon , early therians began to expand into metatherians and eutherians , and cimolodont multituberculates went on to become common in

9844-452: The principal types of evidence about ancient life, and geochemical evidence has helped to decipher the evolution of life before there were organisms large enough to leave body fossils. Estimating the dates of these remains is essential but difficult: sometimes adjacent rock layers allow radiometric dating , which provides absolute dates that are accurate to within 0.5%, but more often paleontologists have to rely on relative dating by solving

9951-432: The radioactive element was incorporated into the rock. Radioactive elements are common only in rocks with a volcanic origin, and so the only fossil-bearing rocks that can be dated radiometrically are a few volcanic ash layers. Consequently, paleontologists must usually rely on stratigraphy to date fossils. Stratigraphy is the science of deciphering the "layer-cake" that is the sedimentary record, and has been compared to

10058-701: The same approach as historical scientists: construct a set of hypotheses about the causes and then look for a "smoking gun". Paleontology lies between biology and geology since it focuses on the record of past life, but its main source of evidence is fossils in rocks. For historical reasons, paleontology is part of the geology department at many universities: in the 19th and early 20th centuries, geology departments found fossil evidence important for dating rocks, while biology departments showed little interest. Paleontology also has some overlap with archaeology , which primarily works with objects made by humans and with human remains, while paleontologists are interested in

10165-478: The similarity of the DNA in their genomes . Molecular phylogenetics has also been used to estimate the dates when species diverged, but there is controversy about the reliability of the molecular clock on which such estimates depend. The simplest definition of "paleontology" is "the study of ancient life". The field seeks information about several aspects of past organisms: "their identity and origin, their environment and evolution, and what they can tell us about

10272-470: The slow recovery from this catastrophe a previously obscure group, archosaurs , became the most abundant and diverse terrestrial vertebrates. One archosaur group, the dinosaurs, were the dominant land vertebrates for the rest of the Mesozoic , and birds evolved from one group of dinosaurs. During this time mammals' ancestors survived only as small, mainly nocturnal insectivores , which may have accelerated

10379-631: The study of anatomically modern humans . It now uses techniques drawn from a wide range of sciences, including biochemistry , mathematics , and engineering. Use of all these techniques has enabled paleontologists to discover much of the evolutionary history of life , almost back to when Earth became capable of supporting life, nearly 4 billion years ago. As knowledge has increased, paleontology has developed specialised sub-divisions, some of which focus on different types of fossil organisms while others study ecology and environmental history, such as ancient climates . Body fossils and trace fossils are

10486-629: The systematic study of fossils emerged as an integral part of the changes in natural philosophy that occurred during the Age of Reason . In the Italian Renaissance, Leonardo da Vinci made various significant contributions to the field as well as depicted numerous fossils. Leonardo's contributions are central to the history of paleontology because he established a line of continuity between the two main branches of paleontology – ichnology and body fossil paleontology. He identified

10593-506: The top of the food chain. The first true crocodiles evolved, pushing the large amphibians to near extinction. All-in-all, archosaurs rose to rule the world. Meanwhile, the first true mammals evolved, remaining relatively small, but spreading widely; the Jurassic Castorocauda , for example, had adaptations for swimming, digging and catching fish. Fruitafossor , from the late Jurassic Period about 150 million years ago,

10700-406: The word "palaeontology" to refer to the study of ancient living organisms through fossils. As knowledge of life's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of life. This encouraged early evolutionary theories on the transmutation of species . After Charles Darwin published Origin of Species in 1859, much of

10807-454: Was "seeded" from elsewhere , but most research concentrates on various explanations of how life could have arisen independently on Earth. For about 2,000 million years microbial mats , multi-layered colonies of different bacteria, were the dominant life on Earth. The evolution of oxygenic photosynthesis enabled them to play the major role in the oxygenation of the atmosphere from about 2,400  million years ago . This change in

10914-531: Was about the size of a chipmunk, and its teeth, forelimbs and back suggest that it dug open the nests of social insects (probably termites , as ants had not yet appeared) ; Volaticotherium was able to glide for short distances, such as modern flying squirrels . The first multituberculates such as Rugosodon evolved. The Middle Jurassic spans from 175 to 163 million years ago. During this epoch, dinosaurs flourished as huge herds of sauropods, such as Brachiosaurus and Diplodocus , filled

11021-928: Was comparatively mild. The sole major Mesozoic orogeny occurred in what is now the Arctic , creating the Innuitian orogeny , the Brooks Range , the Verkhoyansk and Cherskiy Ranges in Siberia, and the Khingan Mountains in Manchuria. This orogeny was related to the opening of the Arctic Ocean and suturing of the North China and Siberian cratons to Asia. In contrast, the era featured

11128-537: Was distant from its shores, temperatures fluctuated greatly, and the interior probably included expansive deserts . Abundant red beds and evaporites such as halite support these conclusions, but some evidence suggests the generally dry climate of the Triassic was punctuated by episodes of increased rainfall. The most important humid episodes were the Carnian Pluvial Event and one in the Rhaetian ,

11235-538: Was dominated by deserts in the interior of the Pangaea supercontinent. The Earth had just witnessed a massive die-off in which 95% of all life became extinct, and the most common vertebrate life on land were Lystrosaurus , labyrinthodonts , and Euparkeria along with many other creatures that managed to survive the Permian extinction. Temnospondyls reached peak diversity during the early Triassic. The Middle Triassic, from 247 to 237 million years ago, featured

11342-602: Was still dominated by cycads and ferns until after the Cretaceous–Paleogene extinction. Some plant species had distributions that were markedly different from succeeding periods; for example, the Schizeales , a fern order, were skewed to the Northern Hemisphere in the Mesozoic, but are now better represented in the Southern Hemisphere. The extinction of nearly all animal species at the end of

11449-485: Was the height of archosaur diversity, and the first birds and eutherian mammals also appeared. Some have argued that insects diversified in symbiosis with angiosperms, because insect anatomy , especially the mouth parts, seems particularly well-suited for flowering plants. However, all major insect mouth parts preceded angiosperms, and insect diversification actually slowed when they arrived, so their anatomy originally must have been suited for some other purpose. At

#761238