Misplaced Pages

Karl Ferdinand Braun

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#89910

118-402: Karl Ferdinand Braun ( German: [ˈfɛʁdinant ˈbʁaʊn] ; 6 June 1850 – 20 April 1918) was a German electrical engineer , physicist and inventor. Braun contributed significantly to the development of radio when he invented the phased array antenna in 1905, which led to the development of radar , smart antennas and MIMO . He built the first cathode-ray tube , which led to

236-647: A degree in electrical engineering, electronic or electrical and electronic engineering. Practicing engineers may have professional certification and be members of a professional body or an international standards organization. These include the International Electrotechnical Commission (IEC), the National Society of Professional Engineers (NSPE), the Institute of Electrical and Electronics Engineers (IEEE) and

354-470: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,

472-470: A mass-production basis, they opened the door for more compact devices. The first integrated circuits were the hybrid integrated circuit invented by Jack Kilby at Texas Instruments in 1958 and the monolithic integrated circuit chip invented by Robert Noyce at Fairchild Semiconductor in 1959. The MOSFET (metal–oxide–semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed Atalla and Dawon Kahng at BTL in 1959. It

590-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes

708-614: A variety of topics in electrical engineering . Initially such topics cover most, if not all, of the subdisciplines of electrical engineering. At some schools, the students can then choose to emphasize one or more subdisciplines towards the end of their courses of study. At many schools, electronic engineering is included as part of an electrical award, sometimes explicitly, such as a Bachelor of Engineering (Electrical and Electronic), but in others, electrical and electronic engineering are both considered to be sufficiently broad and complex that separate degrees are offered. Radar Radar

826-425: A compass needle; of William Sturgeon , who in 1825 invented the electromagnet ; of Joseph Henry and Edward Davy , who invented the electrical relay in 1835; of Georg Ohm , who in 1827 quantified the relationship between the electric current and potential difference in a conductor ; of Michael Faraday , the discoverer of electromagnetic induction in 1831; and of James Clerk Maxwell , who in 1873 published

944-526: A degree is usually four or five years and the completed degree may be designated as a Bachelor of Science in Electrical/Electronics Engineering Technology, Bachelor of Engineering , Bachelor of Science, Bachelor of Technology , or Bachelor of Applied Science , depending on the university. The bachelor's degree generally includes units covering physics , mathematics, computer science , project management , and

1062-421: A device later named electrophorus that produced a static electric charge. By 1800 Alessandro Volta had developed the voltaic pile , a forerunner of the electric battery. In the 19th century, research into the subject started to intensify. Notable developments in this century include the work of Hans Christian Ørsted , who discovered in 1820 that an electric current produces a magnetic field that will deflect

1180-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to

1298-540: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during

SECTION 10

#1732772483090

1416-643: A general electronic component. The most common microelectronic components are semiconductor transistors , although all main electronic components ( resistors , capacitors etc.) can be created at a microscopic level. Nanoelectronics is the further scaling of devices down to nanometer levels. Modern devices are already in the nanometer regime, with below 100 nm processing having been standard since around 2002. Microelectronic components are created by chemically fabricating wafers of semiconductors such as silicon (at higher frequencies, compound semiconductors like gallium arsenide and indium phosphide) to obtain

1534-407: A large number—often millions—of tiny electrical components, mainly transistors , into a small chip around the size of a coin . This allowed for the powerful computers and other electronic devices we see today. Microelectronics engineering deals with the design and microfabrication of very small electronic circuit components for use in an integrated circuit or sometimes for use on their own as

1652-881: A lawsuit regarding a patent claim by the Marconi Corporation against the wireless station of Telefunken at Sayville, New York . After the US entered the war, Braun was detained , but could move freely within Brooklyn , New York. Braun died in his house in Brooklyn, before the war ended in 1918. In 1987 the Society for Information Display created the Karl Ferdinand Braun Prize, awarded for an outstanding technical achievement in display technology. Electrical engineer Electrical engineering

1770-533: A much longer distance. Braun invented the phased array antenna in 1905. He described in his Nobel Prize lecture how he carefully arranged three antennas to transmit a directional signal. This invention led to the development of radar , smart antennas , and MIMO . Braun's British patent on tuning was used by Marconi in many of his tuning patents. Guglielmo Marconi used Braun's patents (among others). Marconi would later admit to Braun himself that he had " borrowed " portions of Braun's work . In 1909, Braun shared

1888-749: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer

2006-457: A profession in the later 19th century. Practitioners had created a global electric telegraph network, and the first professional electrical engineering institutions were founded in the UK and the US to support the new discipline. Francis Ronalds created an electric telegraph system in 1816 and documented his vision of how the world could be transformed by electricity. Over 50 years later, he joined

2124-450: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,

2242-732: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and

2360-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct

2478-433: A subject of scientific interest since at least the early 17th century. William Gilbert was a prominent early electrical scientist, and was the first to draw a clear distinction between magnetism and static electricity . He is credited with establishing the term "electricity". He also designed the versorium : a device that detects the presence of statically charged objects. In 1762 Swedish professor Johan Wilcke invented

SECTION 20

#1732772483090

2596-677: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented

2714-642: A unified theory of electricity and magnetism in his treatise Electricity and Magnetism . In 1782, Georges-Louis Le Sage developed and presented in Berlin probably the world's first form of electric telegraphy , using 24 different wires, one for each letter of the alphabet. This telegraph connected two rooms. It was an electrostatic telegraph that moved gold leaf through electrical conduction. In 1795, Francisco Salva Campillo proposed an electrostatic telegraph system. Between 1803 and 1804, he worked on electrical telegraphy, and in 1804, he presented his report at

2832-426: A variety of industries. Electronic engineering involves the design and testing of electronic circuits that use the properties of components such as resistors , capacitors , inductors , diodes , and transistors to achieve a particular functionality. The tuned circuit , which allows the user of a radio to filter out all but a single station, is just one example of such a circuit. Another example to research

2950-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become

3068-907: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and

3186-470: Is a pneumatic signal conditioner. Prior to the Second World War, the subject was commonly known as radio engineering and basically was restricted to aspects of communications and radar , commercial radio , and early television . Later, in post-war years, as consumer devices began to be developed, the field grew to include modern television, audio systems, computers, and microprocessors . In

3304-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects

3422-436: Is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of a transmitter producing electromagnetic waves in

3540-415: Is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity , electronics , and electromagnetism . It emerged as an identifiable occupation in the latter half of the 19th century after the commercialization of the electric telegraph , the telephone, and electrical power generation, distribution, and use. Electrical engineering

3658-444: Is an engineering discipline that deals with the convergence of electrical and mechanical systems. Such combined systems are known as electromechanical systems and have widespread adoption. Examples include automated manufacturing systems , heating, ventilation and air-conditioning systems , and various subsystems of aircraft and automobiles . Electronic systems design is the subject within electrical engineering that deals with

Karl Ferdinand Braun - Misplaced Pages Continue

3776-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only

3894-655: Is divided into a wide range of different fields, including computer engineering , systems engineering , power engineering , telecommunications , radio-frequency engineering , signal processing , instrumentation , photovoltaic cells , electronics , and optics and photonics . Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics , electromagnetics and waves, microwave engineering , nanotechnology , electrochemistry , renewable energies, mechatronics/control, and electrical materials science. Electrical engineers typically hold

4012-567: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having

4130-798: Is still important in the design of many control systems . DSP processor ICs are found in many types of modern electronic devices, such as digital television sets , radios, hi-fi audio equipment, mobile phones, multimedia players , camcorders and digital cameras, automobile control systems, noise cancelling headphones, digital spectrum analyzers , missile guidance systems, radar systems, and telematics systems. In such products, DSP may be responsible for noise reduction , speech recognition or synthesis , encoding or decoding digital media, wirelessly transmitting or receiving data, triangulating positions using GPS , and other kinds of image processing , video processing , audio processing , and speech processing . Instrumentation engineering deals with

4248-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1

4366-461: Is their power consumption as this is closely related to their signal strength . Typically, if the power of the transmitted signal is insufficient once the signal arrives at the receiver's antenna(s), the information contained in the signal will be corrupted by noise , specifically static. Control engineering focuses on the modeling of a diverse range of dynamic systems and the design of controllers that will cause these systems to behave in

4484-567: Is very useful for energy transmission as well as for information transmission. These were also the first areas in which electrical engineering was developed. Today, electrical engineering has many subdisciplines, the most common of which are listed below. Although there are electrical engineers who focus exclusively on one of these subdisciplines, many deal with a combination of them. Sometimes, certain fields, such as electronic engineering and computer engineering , are considered disciplines in their own right. Power & Energy engineering deals with

4602-567: The Institution of Engineering and Technology (IET, formerly the IEE). Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from circuit theory to the management skills of a project manager . The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to sophisticated design and manufacturing software. Electricity has been

4720-628: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,

4838-717: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft

Karl Ferdinand Braun - Misplaced Pages Continue

4956-792: The Z3 , the world's first fully functional and programmable computer using electromechanical parts. In 1943, Tommy Flowers designed and built the Colossus , the world's first fully functional, electronic, digital and programmable computer. In 1946, the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives. In 1948, Claude Shannon published "A Mathematical Theory of Communication" which mathematically describes

5074-548: The compression , error detection and error correction of digitally sampled signals. Signal processing is a very mathematically oriented and intensive area forming the core of digital signal processing and it is rapidly expanding with new applications in every field of electrical engineering such as communications, control, radar, audio engineering , broadcast engineering , power electronics, and biomedical engineering as many already existing analog systems are replaced with their digital counterparts. Analog signal processing

5192-658: The doubling of transistors on an IC chip every two years, predicted by Gordon Moore in 1965. Silicon-gate MOS technology was developed by Federico Faggin at Fairchild in 1968. Since then, the MOSFET has been the basic building block of modern electronics. The mass-production of silicon MOSFETs and MOS integrated circuit chips, along with continuous MOSFET scaling miniaturization at an exponential pace (as predicted by Moore's law ), has since led to revolutionary changes in technology, economy, culture and thinking. The Apollo program which culminated in landing astronauts on

5310-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,

5428-452: The generation , transmission , and distribution of electricity as well as the design of a range of related devices. These include transformers , electric generators , electric motors , high voltage engineering, and power electronics . In many regions of the world, governments maintain an electrical network called a power grid that connects a variety of generators together with users of their energy. Users purchase electrical energy from

5546-460: The radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. Radar was developed secretly for military use by several countries in

5664-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during

5782-448: The transmission of information across a communication channel such as a coax cable , optical fiber or free space . Transmissions across free space require information to be encoded in a carrier signal to shift the information to a carrier frequency suitable for transmission; this is known as modulation . Popular analog modulation techniques include amplitude modulation and frequency modulation . The choice of modulation affects

5900-493: The "Braun tube" in German-speaking countries ( Braunsche Röhre ) and other countries such as Korea (브라운관: Buraun-kwan ) and Japan ( ブラウン管 : Buraun-kan ). During the development of radio , he also worked on wireless telegraphy . In 1897, Braun joined the line of wireless pioneers. His major contributions were the introduction of a closed tuned circuit in the generating part of the transmitter, its separation from

6018-713: The "great grandfather of every semiconductor ever manufactured" and a co-father of radio telegraphy, together with Marconi. Braun was born in Fulda , Germany, and educated at the University of Marburg and received a PhD from the University of Berlin in 1872. In 1874, he discovered in Leipzig while he was working there as a secondary school teacher in the Thomasschule , that a point-contact metal–semiconductor junction rectifies alternating current . He became director of

SECTION 50

#1732772483090

6136-534: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through

6254-429: The 1850s had shown the relationship of different forms of electromagnetic radiation including the possibility of invisible airborne waves (later called "radio waves"). In his classic physics experiments of 1888, Heinrich Hertz proved Maxwell's theory by transmitting radio waves with a spark-gap transmitter , and detected them by using simple electrical devices. Other physicists experimented with these new waves and in

6372-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told

6490-610: The Moon with Apollo 11 in 1969 was enabled by NASA 's adoption of advances in semiconductor electronic technology , including MOSFETs in the Interplanetary Monitoring Platform (IMP) and silicon integrated circuit chips in the Apollo Guidance Computer (AGC). The development of MOS integrated circuit technology in the 1960s led to the invention of the microprocessor in the early 1970s. The first single-chip microprocessor

6608-539: The Nobel Prize for physics with Marconi for "contributions to the development of wireless telegraphy ". The prize awarded to Braun in 1909 depicts this design. Braun experimented at first at the University of Strasbourg. Not before long he bridged a distance of 42 km to the city of Mutzig. In spring 1899, Braun, accompanied by his colleagues Cantor and Zenneck, went to Cuxhaven to continue their experiments at

6726-520: The North Sea. On 24 September 1900 radio telegraphy signals were exchanged regularly with the island of Heligoland over a distance of 62 km. Light vessels in the river Elbe and a coast station at Cuxhaven commenced a regular radio telegraph service. Braun went to the United States at the beginning of World War I (before the U.S. had entered the war) to be a witness for the defense in

6844-537: The Physical Institute and professor of physics at the University of Strassburg in 1895. In 1897, he built the first cathode-ray tube (CRT) and cathode-ray tube oscilloscope . The CRT became the cornerstone in developing fully electronic television, being a part of every TV, computer and any other screen set up till the introduction of the LCD screen at the end of the 20th century. It is still mostly called

6962-580: The Royal Academy of Natural Sciences and Arts of Barcelona. Salva's electrolyte telegraph system was very innovative though it was greatly influenced by and based upon two discoveries made in Europe in 1800—Alessandro Volta's electric battery for generating an electric current and William Nicholson and Anthony Carlyle's electrolysis of water. Electrical telegraphy may be considered the first example of electrical engineering. Electrical engineering became

7080-724: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on

7198-558: The amplifier tube, called the triode . In 1920, Albert Hull developed the magnetron which would eventually lead to the development of the microwave oven in 1946 by Percy Spencer . In 1934, the British military began to make strides toward radar (which also uses the magnetron) under the direction of Dr Wimperis, culminating in the operation of the first radar station at Bawdsey in August 1936. In 1941, Konrad Zuse presented

SECTION 60

#1732772483090

7316-442: The antenna directly to the spark gap produced only a heavily damped pulse train. There were only a few cycles before oscillations ceased. Braun's circuit afforded a much longer sustained oscillation because the energy encountered less losses swinging between coil and Leyden Jars. And by means of inductive antenna coupling the radiator was better matched to the generator. The resultant stronger and less bandwidth consuming signals bridged

7434-815: The applications of computer engineering. Photonics and optics deals with the generation, transmission, amplification, modulation, detection, and analysis of electromagnetic radiation . The application of optics deals with design of optical instruments such as lenses , microscopes , telescopes , and other equipment that uses the properties of electromagnetic radiation. Other prominent applications of optics include electro-optical sensors and measurement systems, lasers , fiber-optic communication systems, and optical disc systems (e.g. CD and DVD). Photonics builds heavily on optical technology, supplemented with modern developments such as optoelectronics (mostly involving semiconductors ), laser systems, optical amplifiers and novel materials (e.g. metamaterials ). Mechatronics

7552-537: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as

7670-479: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as

7788-413: The cost and performance of a system and these two factors must be balanced carefully by the engineer. Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver . A key consideration in the design of transmitters

7906-467: The curvature of the Earth. Marconi later transmitted the wireless signals across the Atlantic between Poldhu, Cornwall , and St. John's, Newfoundland , a distance of 2,100 miles (3,400 km). Millimetre wave communication was first investigated by Jagadish Chandra Bose during 1894–1896, when he reached an extremely high frequency of up to 60   GHz in his experiments. He also introduced

8024-500: The design of devices to measure physical quantities such as pressure , flow , and temperature. The design of such instruments requires a good understanding of physics that often extends beyond electromagnetic theory . For example, flight instruments measure variables such as wind speed and altitude to enable pilots the control of aircraft analytically. Similarly, thermocouples use the Peltier-Seebeck effect to measure

8142-561: The design of new hardware . Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline. Desktop computers represent a tiny fraction of the devices a computer engineer might work on, as computer-like architectures are now found in a range of embedded devices including video game consoles and DVD players . Computer engineers are involved in many hardware and software aspects of computing. Robots are one of

8260-577: The desired manner. To implement such controllers, electronics control engineers may use electronic circuits , digital signal processors , microcontrollers , and programmable logic controllers (PLCs). Control engineering has a wide range of applications from the flight and propulsion systems of commercial airliners to the cruise control present in many modern automobiles . It also plays an important role in industrial automation . Control engineers often use feedback when designing control systems . For example, in an automobile with cruise control

8378-420: The desired transport of electronic charge and control of current. The field of microelectronics involves a significant amount of chemistry and material science and requires the electronic engineer working in the field to have a very good working knowledge of the effects of quantum mechanics . Signal processing deals with the analysis and manipulation of signals . Signals can be either analog , in which case

8496-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of

8614-476: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during

8732-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar

8850-469: The development of television . He also built the first semiconductor . Braun shared the 1909 Nobel Prize in Physics with Guglielmo Marconi "for their contributions to the development of wireless telegraphy". He was a founder of Telefunken , one of the pioneering communications and television companies, and has been called the "father of television" (shared with inventors like Paul Gottlieb Nipkow ),

8968-626: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for

9086-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate

9204-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared

9322-466: The firm GEMA  [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such

9440-444: The first Department of Electrical Engineering in the United States. In the same year, University College London founded the first chair of electrical engineering in Great Britain. Professor Mendell P. Weinbach at University of Missouri established the electrical engineering department in 1886. Afterwards, universities and institutes of technology gradually started to offer electrical engineering programs to their students all over

9558-583: The future it is hoped the devices will help build tiny implantable medical devices and improve optical communication . In aerospace engineering and robotics , an example is the most recent electric propulsion and ion propulsion. Electrical engineers typically possess an academic degree with a major in electrical engineering, electronics engineering , electrical engineering technology , or electrical and electronic engineering. The same fundamental principles are taught in all programs, though emphasis may vary according to title. The length of study for such

9676-533: The grid, avoiding the costly exercise of having to generate their own. Power engineers may work on the design and maintenance of the power grid as well as the power systems that connect to it. Such systems are called on-grid power systems and may supply the grid with additional power, draw power from the grid, or do both. Power engineers may also work on systems that do not connect to the grid, called off-grid power systems, which in some cases are preferable to on-grid systems. Telecommunications engineering focuses on

9794-458: The international standardization of the units volt , ampere , coulomb , ohm , farad , and henry . This was achieved at an international conference in Chicago in 1893. The publication of these standards formed the basis of future advances in standardization in various industries, and in many countries, the definitions were immediately recognized in relevant legislation. During these years,

9912-446: The mid-to-late 1950s, the term radio engineering gradually gave way to the name electronic engineering . Before the invention of the integrated circuit in 1959, electronic circuits were constructed from discrete components that could be manipulated by humans. These discrete circuits consumed much space and power and were limited in speed, although they are still common in some applications. By contrast, integrated circuits packed

10030-511: The multi-disciplinary design issues of complex electrical and mechanical systems. The term mechatronics is typically used to refer to macroscopic systems but futurists have predicted the emergence of very small electromechanical devices. Already, such small devices, known as microelectromechanical systems (MEMS), are used in automobiles to tell airbags when to deploy, in digital projectors to create sharper images, and in inkjet printers to create nozzles for high definition printing. In

10148-519: The new Society of Telegraph Engineers (soon to be renamed the Institution of Electrical Engineers ) where he was regarded by other members as the first of their cohort. By the end of the 19th century, the world had been forever changed by the rapid communication made possible by the engineering development of land-lines, submarine cables , and, from about 1890, wireless telegraphy . Practical applications and advances in such fields created an increasing need for standardized units of measure . They led to

10266-508: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following

10384-531: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating

10502-525: The passage of information with uncertainty ( electrical noise ). The first working transistor was a point-contact transistor invented by John Bardeen and Walter Houser Brattain while working under William Shockley at the Bell Telephone Laboratories (BTL) in 1947. They then invented the bipolar junction transistor in 1948. While early junction transistors were relatively bulky devices that were difficult to manufacture on

10620-1370: The period before and during World War II . A key development was the cavity magnetron in the United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym , a common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of

10738-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on

10856-401: The process developed devices for transmitting and detecting them. In 1895, Guglielmo Marconi began work on a way to adapt the known methods of transmitting and detecting these "Hertzian waves" into a purpose-built commercial wireless telegraphic system. Early on, he sent wireless signals over a distance of one and a half miles. In December 1901, he sent wireless waves that were not affected by

10974-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,

11092-399: The radiating part (the antenna) by means of inductive coupling, and later on the usage of crystals for receiving purposes. Around 1898, he invented a crystal detector . Wireless telegraphy claimed Dr. Braun's full attention in 1898, and for many years after that he applied himself almost exclusively to the task of solving its problems. Dr. Braun had written extensively on wireless subjects and

11210-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting

11328-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called

11446-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has

11564-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R

11682-425: The signal varies continuously according to the information, or digital , in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve

11800-411: The study of electricity was largely considered to be a subfield of physics since early electrical technology was considered electromechanical in nature. The Technische Universität Darmstadt founded the world's first department of electrical engineering in 1882 and introduced the first-degree course in electrical engineering in 1883. The first electrical engineering degree program in the United States

11918-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When

12036-585: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt

12154-444: The temperature difference between two points. Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control. Computer engineering deals with the design of computers and computer systems . This may involve

12272-478: The theoretical basis of alternating current engineering. The spread in the use of AC set off in the United States what has been called the war of the currents between a George Westinghouse backed AC system and a Thomas Edison backed DC power system, with AC being adopted as the overall standard. During the development of radio , many scientists and inventors contributed to radio technology and electronics. The mathematical work of James Clerk Maxwell during

12390-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection

12508-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between

12626-472: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as

12744-424: The use of semiconductor junctions to detect radio waves, when he patented the radio crystal detector in 1901. In 1897, Karl Ferdinand Braun introduced the cathode-ray tube as part of an oscilloscope , a crucial enabling technology for electronic television . John Fleming invented the first radio tube, the diode , in 1904. Two years later, Robert von Lieben and Lee De Forest independently developed

12862-557: The use of transformers , developed rapidly in the 1880s and 1890s with transformer designs by Károly Zipernowsky , Ottó Bláthy and Miksa Déri (later called ZBD transformers), Lucien Gaulard , John Dixon Gibbs and William Stanley Jr. Practical AC motor designs including induction motors were independently invented by Galileo Ferraris and Nikola Tesla and further developed into a practical three-phase form by Mikhail Dolivo-Dobrovolsky and Charles Eugene Lancelot Brown . Charles Steinmetz and Oliver Heaviside contributed to

12980-485: The vehicle's speed is continuously monitored and fed back to the system which adjusts the motor's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback. Control engineers also work in robotics to design autonomous systems using control algorithms which interpret sensory feedback to control actuators that move robots such as autonomous vehicles , autonomous drones and others used in

13098-560: The world. During these decades the use of electrical engineering increased dramatically. In 1882, Thomas Edison switched on the world's first large-scale electric power network that provided 110 volts— direct current (DC)—to 59 customers on Manhattan Island in New York City. In 1884, Sir Charles Parsons invented the steam turbine allowing for more efficient electric power generation. Alternating current , with its ability to transmit power more efficiently over long distances via

13216-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over

13334-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by

13452-489: Was started at Massachusetts Institute of Technology (MIT) in the physics department under Professor Charles Cross, though it was Cornell University to produce the world's first electrical engineering graduates in 1885. The first course in electrical engineering was taught in 1883 in Cornell's Sibley College of Mechanical Engineering and Mechanic Arts . In about 1885, Cornell President Andrew Dickson White established

13570-458: Was the Intel 4004 , released in 1971. The Intel 4004 was designed and realized by Federico Faggin at Intel with his silicon-gate MOS technology, along with Intel's Marcian Hoff and Stanley Mazor and Busicom's Masatoshi Shima. The microprocessor led to the development of microcomputers and personal computers, and the microcomputer revolution . One of the properties of electricity is that it

13688-463: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for

13806-474: Was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. It revolutionized the electronics industry , becoming the most widely used electronic device in the world. The MOSFET made it possible to build high-density integrated circuit chips. The earliest experimental MOS IC chip to be fabricated was built by Fred Heiman and Steven Hofstein at RCA Laboratories in 1962. MOS technology enabled Moore's law ,

13924-482: Was well known through his many contributions to the Electrician and other scientific journals. In 1899, he would apply for the patent Wireless electro transmission of signals over surfaces . Also in 1899, he is said to have applied for a patent on Electro telegraphy by means of condensers and induction coils . Pioneers working on wireless devices eventually came to a limit of distance they could cover. Connecting

#89910