46-537: The Indian Ballistic Missile Defence Programme is an initiative to develop and deploy a multi-layered ballistic missile defence system to protect India from ballistic missile attacks. It was launched in 2000 after the Kargil War by the Atal Bihari Vajpayee government. Testing was carried out and continuing as of 2006, and the system was expected to be operational within four years according to
92-419: A cruise missile defence system. In order to ward off the threats of nuke-tipped cruise missile attack India has a new missile defence programme which will be focused solely on intercepting cruise missiles. The technological breakthrough has been created with an Advanced Air Defence missile (AAD). DRDO Chief, Dr V K Saraswat stated in an Interview " Our studies have indicated that this AAD will be able to handle
138-480: A cruise missile intercept ". Furthermore, India is acquiring airborne radars like EL/W-2090 AWACS to ensure detection of cruise missiles in order to stay on top of the threat. Barak-8 is a long-range anti-air and anti-missile naval defence system developed jointly by Israel Aerospace Industries (IAI) and the Defence Research and Development Organisation (DRDO) of India. The Indian Army inducted
184-443: A datalink. When the interceptors close onto the target missile, it activates the radar seeker to search for the target missile and guides itself to intercept the target. Multiple PAD and AAD interceptors can be launched against a target for high kill probability. The Prithvi Air Defence (PAD), also known as Pradyumna Ballistic Missile Interceptor is an anti-ballistic missile developed to intercept incoming ballistic missiles outside
230-553: A maximum range of more than 5,000 km capable of intercepting intermediate-range ballistic missile and intercontinental ballistic missile . The missile was scheduled to be tested between 2024 and 2025. It is expected that future frontline ships of the Indian Navy will also be equipped with this missile. Swordfish is the target acquisition and fire control radar for the BMD system. The Long Range Tracking Radar (LRTR) currently has
276-546: A nuclear retaliation by Pakistan in the event of an extended war. The leader of Pakistan's senate noted that " the purpose of developing weapons becomes meaningless if they are not used when they are needed ." Some experts believe that following nuclear tests in 1998, the Pakistani military was emboldened by its nuclear deterrent cover to markedly increase coercion against India. Development of an anti-ballistic missile system began in late 1999, suggesting that India initiated
322-454: A period of crisis in anticipation of trouble. This is less than optimal for a weapon intended to defend against an attack at any moment. Prithvi Air Defence Exercise The PADE (Prithvi Air Defence Exercise) was conducted in November 2006 in which a PAD missile successfully intercepted a modified Prithvi-II Missile at an altitude of 50 km (31 mi). The Prithvi-II ballistic missile
368-549: A range of 600 km (370 mi) to 800 km (500 mi) and can spot objects as small as a cricket ball . The DRDO plans to upgrade the capacity of Swordfish to 1,500 km by 2017. As per Ministry of Defence (MoD), two units of VLRTR systems were accorded by the Union Government under a Memorandum of Understanding (MoU) between National Technical Research Organisation (NTRO) and Indian Air Force for Indian Ballistic Missile Defence Programme. First unit
414-573: A variant of Barak 8 missile to meet its requirement for a medium-range surface-to-air air defence missile. The naval version of this missile has the capability to intercept incoming enemy cruise missiles and combat jets targeting its warships at sea. It would also be inducted into the Indian Air Force , followed by the Army. India has a joint venture for this missile with Israel . Recently developed, India's Akash missile defence system also has
460-515: Is a 13 m tall, 18.87 tons, three stage missile. Solid rocket motors with flexible nozzles constituted the first two stages, with the Kill Vehicle being the third stage. According to a report published on the official DRDO website, the missile has the capability to shoot down targets moving at 10 km per second in orbits as high as 1,200 km. The accuracy of the missile is less than 10 cm It has been suggested that this missile may have
506-420: Is a two-stage missile and powered by solid propellants. The missile boasts an advanced but indigenous missile control system. It has a range of 1,500 km to 3,000 km along with a large kill altitude bracket. It has the capability to neutralise any nuclear-capable ballistic missile with a range of about 5,000 km. On 2 November 2022, the maiden successful test of the missile was conducted by DRDO. The test witnessed
SECTION 10
#1732783887306552-423: Is an anti-ballistic missile designed to intercept incoming ballistic missiles in the endo-atmosphere at an altitude of 40 km (25 mi). The AAD is a single-stage, solid-fuelled missile with siliconised carbon jet vanes. Guidance is similar to that of PAD with indigenous radio frequency seeker. It supports inertial navigation system (INS), mid-course updates from ground-based radar and active radar homing in
598-407: Is an anti-ballistic missile designed to intercept incoming ballistic missiles in the exo-atmosphere at an altitude from 50 km (31 mi) to 180 km (110 mi). The PDV is a two-stage missile and both the stages are powered by solid propellants. It has an innovative system for controlling the vehicle at an altitude of more than 180 km. The PDV is intended to replace the existing PAD in
644-434: Is designed to take out target missiles at altitudes above 150 km (93 mi). On 27 April 2014 first PDV was successfully test- conducted by DRDO. On 11 February 2017, DRDO successfully conducted a second test for PDV missile. The third test was conducted on 12 February 2019. In March 2019, India conducted an ASAT test . India officially confirmed that this missile was a Ballistic Missile Defence interceptor. PDV Mk-2
690-749: Is equipped with a dual redundant communication link to the Launch Control Complex (LCC) and has an RF Wireless Link and a Physical Link. The DRDO Floating Test Range is expected to assist in the development of the Phase 2. This vessel INS Anvesh (A41) was set to undergo sea trials in September 2021. On 21 April 2023, DRDO and the Indian Navy conducted the maiden flight trial of the sea-based interceptor missile for naval ballistic missile defence capability. Prithvi Defence Vehicle (PDV)
736-415: Is now complete. The Indian Air Force (IAF) and Defence Research and Development Organisation (DRDO) are awaiting for Government of India approval to install the missile shield around national capital which will take three to four years for installation post approval. Since the early 90s, India has faced the threat of ballistic missile attacks from Pakistan against which it has fought multiple wars in
782-421: Is then processed by ten computers which run simultaneously. The MCC is connected to all other elements of the defence through a WAN . The MCC performs target classifications and assignment as well as kill assessments. It also acts as a decision support system for the commander. It can also decide the number of interceptors required for the target for an assured kill probability. After performing all these functions,
828-441: The Kargil War between India and Pakistan became the first direct conflict between two declared nuclear powers. As the war progressed, the first hint of the possible use of a nuclear weapon was on 31 May, when Pakistani foreign secretary Shamshad Ahmad made a statement warning that an escalation of the limited conflict could lead Pakistan to use "any weapon" in its arsenal . This was immediately interpreted as an obvious threat of
874-608: The active radar seeker . Advanced Systems Laboratory (ASL) provided the motors, jet vanes and structures for the AAD and PAD. High Energy Materials Research Laboratory (HEMRL) supplied the propellants for the missile. Research Centre Imarat and Programme Air Defence (PGAD) at Hyderabad are spearheading the Indian Ballistic Missile Defence Programme. By April 2019, the Phase-1 of the program
920-567: The AAD missile for interception at endo-atmospheric altitudes of up to 30 km (19 mi). The deployed system would consist of many launch vehicles, radars , Launch Control Centres (LCC) and the Mission Control Centre (MCC). All these are geographically distributed and connected by a secure communication network. The MCC is the software intensive component of the ballistic missile defence system. It receives information from various sources such as radars and satellites which
966-710: The Advanced Air Defence (AAD) system which destroyed a 'hostile' target ballistic missile, a modified Prithvi, at an altitude of 16 km over the Bay of Bengal . The Advanced Air Defence (AAD) missile positioned at Abdul Kalam Island, about 70 km across sea from Chandipur, received signals from tracking radars installed along the coastline and travelled through the sky at a speed of Mach 4.5 to destroy it. The Advanced Air Defence (AAD) also known as Ashwin Ballistic Missile Interceptor
SECTION 20
#17327838873061012-505: The DRDO carried out a second successful test of the PAD interceptor missile. The target used was a ship launched Dhanush missile which followed the trajectory of a missile with range of a 1,500 km (930 mi). The target was tracked by Swordfish (LRTR) radar and destroyed by the PAD at 75 km (47 mi) altitude. On 6 March 2011 DRDO successfully test-fired an interceptor missile from
1058-513: The MCC assigns the target to the LCC of a launch battery. The LCC starts computing the time to launch the interceptor based upon information received from a radar based on the speed, altitude and flight path of the target. The LCC prepares the missile for launch in real time and carries out ground guidance computation. After the interceptor is launched, it is provided target information from the radar through
1104-470: The PAD/AAD combination. It has a IIR seeker for its kill vehicle as well. The PDV will replace the PAD with a far more capable missile and will complete Phase 1 of the BMD system, allowing it to be operational by 2013. Whereupon Phase 2 development will take over for protection against missiles of the 5,000 km (3,100 mi) range class. The first test flight of the missile was expected in 2010. The PDV
1150-448: The anti-ballistic missile system began in 1999. Around 40 public and private companies were involved in the development of the systems. They include Ordnance Factory Board , Bharat Electronics Limited and Bharat Dynamics among others. Defence Research and Development Laboratory (DRDL) developed the mission control software for the AAD missile. Research Centre Imarat (RCI) developed navigation, electromechanical actuation systems and
1196-535: The atmosphere (exo-atmospheric). Based on the Prithvi missile , PAD is a two-stage missile with a maximum interception altitude of 80 km (50 mi). The first stage is a Solid fuelled motor while the second stage is Liquid fuelled. It has manoeuvre thrusters which can generate a lateral acceleration of more than 5 g s at 50 km (31 mi) altitude. Guidance is provided by an internal navigation system with mid-course updates from LRTR and active radar homing in
1242-510: The atmosphere) regions. In August 2017, the government cleared the allocation of 850 hectares of land in Alwar district and 350 hectares in Pali district of Rajasthan for setting up radars to track missiles to the DRDO. Defending against an attack by a cruise missile, on the other hand, is similar to tackling a low-flying crewed aircraft and hence most methods of aircraft defence can be used for
1288-567: The ballistic missile defence shield. After successful implementation in Delhi and Mumbai, the system will be used to cover other major cities in the country. This shield can destroy incoming ballistic missiles launched from as far as 2,500 km (1,600 mi) away. When the Phase II is completed and PDV is developed, the two anti-ballistic missiles can intercept targets from up to 5,000 km (3,100 mi) both at exo and endo-atmospheric (inside
1334-521: The capability of exo-atmospheric interception of intercontinental ballistic missiles . A report published on the official DRDO website suggested the same. On DefExpo 2020, DRDO confirmed that PDV Mk-2 was ready for limited series production. The solid rocket booster used is a derivative of the technology first developed for the Sagarika missile . This missile was not derived from the Prithvi ballistic missile . Initially under Phase 2 program, AD-1
1380-597: The capability to " neutralise aerial targets like fighter jets, cruise missiles and air-to-surface missiles ". Project Kusha is an Indian long-range mobile surface-to- air missile defence system under development by the Defence Research and Development Organization (DRDO). The missile system will have a range of 250 km against fighter jets, 350 km against cruise missiles, sea skimming anti-ship missiles, AWACS and mid air refuelers and will be capable of bringing down ballistic missiles and stealth fighters in
1426-459: The country. DRDO's Air Defence Programme Director V. K. Saraswat says its ideal to destroy a ballistic missile carrying nuclear or conventional warheads in its boost phase . Saraswat further added that it will take another 10–15 years for the premier defence research institute to make it usable on the ground. The two-tiered BMD System consists of the PAD, which will intercept missiles at exo-atmospheric altitudes of 50–80 km (31–50 mi) and
Indian Ballistic Missile Defence Programme - Misplaced Pages Continue
1472-716: The head of the country's missiles development programme, Vijay Kumar Saraswat . Introduced in light of the ballistic missile threat from Pakistan and China, it is a double-tiered system consisting of two land and sea-based interceptor missiles , namely the Prithvi Air Defence (PAD) missile for High Altitude interception, and the Advanced Air Defence (AAD) Missile for lower altitude interception. The two-tiered shield should be able to intercept any incoming missile launched from 5,000 kilometres away. The system also includes an overlapping network of early warning and tracking radars, as well as command and control posts. The PAD
1518-521: The improvement of the interception range from 50 to 80 km (31 to 50 mi). The improved missile will utilise a gimbaled directional warhead, a technology also used by Israel, the US and Russia. This technology allows for a smaller warhead to destroy the target missile. The second stage of the PAD uses liquid rocket propellant , which corrodes fuel tanks when stored for long, the PAD could not be on standby 24×7. Instead, it would need to be filled up during
1564-549: The participation of all BMD weapon system elements placed in different locations. The test was successful and all sub systems performed satisfactorily. On 24 July 2024, DRDO conducted another successful flight test of the Phase-II Ballistic Missile Defence System. At 1620 hours, the target missile was fired from Launch Complex-IV Dhamra in an attempt to simulate an adversary missile. Weapon system radars stationed on land and at sea spotted
1610-845: The past and also from China. With the heightening of tensions in the region, and in response to Pakistan's deployment of M-11 missiles bought from China, the Indian Government in August 1995 procured six batteries of S-300 Surface-to-air missiles to protect New Delhi and other cities. In May 1998, India for the second time (since its first test in 1974 ) tested nuclear weapons ( see Pokhran-II ), followed by Pakistan ( see Chagai-I ) with its first-ever nuclear test. With Pakistan's testing of nuclear weapons and missile delivery systems, this threat intensified. India has also developed and tested missile delivery systems during Integrated Guided Missile Development Programme (IGMDP). In 1999,
1656-575: The programme in light of Pakistan's eschewing of a nuclear No first use policy and heightened tensions during the Kargil War including a possibility of full-scale nuclear war. Development accelerated after Washington vetoed a bid by India to acquire the Israeli Arrow-2 interceptor in 2002. Phase-I of the system will enable interception of missiles up to a 2,000-km range, which will be extended to 5,000-km+ range in Phase-II. Development of
1702-619: The target missile, activating the AD-1 Interceptor system. At 1624 hours, the AD-1 endo-atmospheric missile was fired from the ITR Launch Complex-III Chandipur . The entire network-centric weapon system, which includes interceptor missile, mission control center (MCC), low latency communication system, and long range sensors, were validated during the test. The AD-2 missile is in the development phase with
1748-439: The target. On 6 May 2012, Dr. V. K. Saraswat confirmed the completion of Phase-I and added that Phase-II was planned to be completed by 2016 to protect against missiles having range up to 5,000 km, and intercept missiles which are capable of hypersonic speeds above Mach 5. India is also planning to develop a laser-based weapon system as part of its defence to intercept and destroy missiles soon after they are launched towards
1794-689: The terminal phase. It is 7.5 m (25 ft) tall, weighs around 1.2 t (1.2 long tons; 1.3 short tons) and a diameter of less than 0.5 m (1 ft 8 in). The land-based launcher of the missile system is manufactured by Tata Advanced Systems (TASL) and was jointly developed by TASL and DRDO. The launcher is based on a 12×12 truck chassis. Each launcher carries 6 missiles in canisterised form and can launch them in Single or Salvo Mode as per situation. The launcher also includes Launch Control System and power generation system. The launcher, termed as Advanced Air Defence Mobile Launcher System (AAD MLS)
1840-516: The terminal phase. PAD has capability to engage the 3,000 km (1,900 mi) class of ballistic missiles at a speed of Mach 5. PAD is fast enough to hit medium-range ballistic missiles and intermediate-range ballistic missiles . LRTR is the target acquisition and fire control radar for the PAD missile. It is an active phased array radar having the capability to track 200 targets at a range of 1,500 km (930 mi). The PAD missile has also been called Pradyumna . Further development led to
1886-728: The terminal stage. The naval version of the missile might be also developed to supplement the LR-SAM missile in the Indian Navy. On 17 November 2010, an interview with Rafael's Vice President Lova Drori confirmed that the David's Sling system has been offered to the Indian Armed Forces . " That is an important potential area for our future cooperation ", Carter said while on his visit to India in July 2012. Ballistic missile defence Too Many Requests If you report this error to
Indian Ballistic Missile Defence Programme - Misplaced Pages Continue
1932-613: Was completed. Two new anti ballistic missiles that can intercept IRBMs and ICBMs are being developed. These high speed missiles (AD-1 and AD-2) are being developed to intercept ballistic missiles with a range of around 5,000 km (3,100 mi). The new missile will be similar to the Terminal High Altitude Area Defense (THAAD) missile deployed by the US. These missiles will travel at hypersonic speeds and will require radars with scan capability of over 1,500 km (930 mi) to successfully intercept
1978-488: Was designed to neutralize a medium-range ballistic missile at 1,000-3,000 km range, whereas AD-2 was for intercepting a intermediate-range ballistic missile at 3,000-5,500 km range. However, according to Samir V. Kamat, AD-1 can now intercept an incoming missile fired from a distance of 5,000 km. The AD-1 interceptor missile is developed for both low exo-atmospheric and endo-atmospheric interception roles and can be used against long range ballistic missiles. It
2024-461: Was modified successfully to mimic the trajectory of M-11 missiles . The DRDO plans to test the anti-ballistic shield against missiles with a range of 3,000 km (1,900 mi). The test will be conducted with a modified Prithvi missile launched from a naval ship and the anti-ballistic missile launched from Abdul Kalam Island . The interception of the target missile will take place at approximately 80 km (50 mi) altitude. On 6 March 2009
2070-494: Was raised in 2017 and the system is operational. According to scientist V K Saraswat of DRDO the missiles will work in tandem to ensure a hit probability of 99.8 percent. On 6 May 2012, Dr V K Saraswat confirmed that Phase-I was complete and can be deployed to protect two Indian cities at a short notice. He also added that Phase-I was comparable with the PAC-3 system . New Delhi , the national capital, and Mumbai were selected for
2116-582: Was tested in November 2006, followed by the AAD in December 2007. With the test of the PAD missile, India became the fourth country to have successfully developed an anti-ballistic missile system, after the United States , Russia , and Israel . The system has undergone several tests but system is yet to be officially commissioned. As per reports emerged in January 2020, the first phase of BMD program
#305694