Misplaced Pages

JAXA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#382617

60-546: The Japan Aerospace Exploration Agency ( JAXA ) ( 国立研究開発法人宇宙航空研究開発機構 , Kokuritsu-kenkyū-kaihatsu-hōjin Uchū Kōkū Kenkyū Kaihatsu Kikō , lit.   ' National Research and Development Agency Aerospace Research and Development Organisation ' ) is the Japanese national air and space agency . Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA

120-640: A hard X-ray detector (HXD). However, the XRS was rendered inoperable due to a malfunction which caused the satellite to lose its supply of liquid helium. The next JAXA x-ray mission is the Monitor of All-sky X-ray Image (MAXI) . MAXI continuously monitors astronomical X-ray objects over a broad energy band (0.5 to 30 keV). MAXI is installed on the Japanese external module of the ISS. On 17 February 2016, Hitomi (ASTRO-H)

180-504: A future mission. On 14 September 2007, JAXA succeeded in launching the lunar orbit explorer Kaguya , also known as SELENE, on an H-2A rocket (costing 55 billion yen including launch vehicle), the largest such mission since the Apollo program . Its mission was to gather data on the Moon's origin and evolution . It entered lunar orbit on 4 October 2007. After 1 year and 8 months, it impacted

240-558: A long fairing, whereas an H3-30S has three engines, no solid rocket boosters, and a short fairing. W-type fairing is similar to L-type except wider 5.4 m diameter. W-type was mentioned in the description of JAXA's web page, but not in the current description as of November 2023 . Manufacturing of W-type fairing is contracted to RUAG Space (now Beyond Gravity ), whereas other types are manufactured by Kawasaki Heavy Industries. As of November 2018 , three configurations are planned: H3-30, H3-22, and H3-24. A previously mentioned variant,

300-620: A miniature satellite into orbit atop one of its SS520 series rockets. A second attempt on 2 February 2018 was successful, putting a four kilogram CubeSat into Earth orbit. The rocket, known as the SS-520-5, is the world's smallest orbital launcher. In 2023, JAXA began operating the H3 , which will replace the H-IIA and H-IIIB; the H3 is a liquid-fueled launch vehicle developed from a completely new design like

360-418: A payload capacity of 28,300 kg (62,400 lb) to low Earth orbit . H3 will have a "dual-launch capability, but MHI is focused more on dedicated launches" in order to prioritize schedule assurance for customers. As of 2018, MHI is aiming to price the H3 launch service on par with SpaceX's Falcon 9. Sources: Japanese Cabinet The first launch attempt on 17 February 2023 was aborted just before

420-475: A phenomenon in which the cloud top winds in the troposphere circulates around the planet faster than the speed that Venus itself rotates. A thorough explanation for this phenomenon has yet been found. JAXA/ISAS was part of the international Laplace Jupiter mission proposal from its foundation. A Japanese contribution was sought in the form of an independent orbiter to research Jupiter's magnetosphere, JMO (Jupiter Magnetospheric Orbiter). Although JMO never left

480-428: A planned dogleg maneuver in order to achieve sun-synchronous orbit and not in fact a loss of control. Approximately five minutes and twenty-seven seconds after launch, the second stage engine failed to ignite. After continuing to be unable to confirm second stage engine ignition, and with the velocity of the rocket continuing to fall, JAXA sent a self-destruct command to the rocket at around L+ 00:14:50 because there

540-466: Is not pointed towards Earth. The mission was considered fully successful after confirmation that its primary goal, landing within 100 m (330 ft) of the target was achieved, despite subsequent issues. On 29 January, the lander resumed operations after being shutdown for a week. JAXA said it re-established contact with the lander and its solar cells were working again after a shift in lighting conditions allowed it to catch sunlight. After that, SLIM

600-502: Is planned to have a temperature of just 4.5 K and will be much colder. Unlike Akari, which had a geocentric orbit , SPICA will be located at Sun–Earth L 2 . The launch is expected in 2027 or 2028 on JAXA's new H3 Launch Vehicle , however the mission is not yet fully funded. ESA and NASA may also each contribute an instrument. The SPICA mission was cancelled in 2020. Starting from 1979 with Hakucho (CORSA-b), for nearly two decades Japan had achieved continuous observation. However, in

660-452: Is powered by two or three LE-9 engines which uses an expander bleed cycle design similar to the LE-5B engine. The fuel and oxidizer mass of the first stage is 225 metric tons. The second stage is powered by a single engine which is an improved LE-5B. The propellant mass of the second stage is 23 metric tons. Each H3 booster configuration has a two-digit plus letter designation that indicates

SECTION 10

#1732765966383

720-455: Is responsible for research, technology development and launch of satellites into orbit , and is involved in many more advanced missions such as asteroid exploration and possible human exploration of the Moon . Its motto is One JAXA and its corporate slogan is Explore to Realize (formerly Reaching for the skies, exploring space ). On 1 October 2003, three organizations were merged to form

780-514: Is reviewing a new spacecraft mission to the Martian system; a sample return mission to Phobos called MMX (Martian Moons Explorer). First revealed on 9 June 2015, MMX's primary goal is to determine the origin of the Martian moons . Alongside collecting samples from Phobos, MMX will perform remote sensing of Deimos , and may also observe the atmosphere of Mars as well. As of December 2023, MMX

840-526: Is the first all sky survey since the first infrared mission IRAS in 1983. (A 3.6 kg nanosatellite named CUTE-1.7 was also released from the same launch vehicle.) JAXA is also doing further R&D for increasing the performance of its mechanical coolers for its future infrared mission, SPICA . This would enable a warm launch without liquid helium. SPICA has the same size as the ESA Herschel Space Observatory mission, but

900-542: Is the most important factor in achieving cost reduction, improved safety and increased thrust. The expander bleed cycle used in the LE-9 engine is a highly reliable combustion method that Japan has put into practical use for the LE-5A / B engine. However, it is physically difficult for an expander bleed cycle engine to generate large thrust, so the development of the LE-9 engine with a thrust of 1,471 kN (331,000 lb f )

960-459: Is to be launched in fiscal year 2026. On 9 August 2004, ISAS successfully deployed two prototype solar sails from a sounding rocket. A clover-type sail was deployed at 122 km altitude and a fan type sail was deployed at 169 km altitude. Both sails used 7.5 micrometer -thick film. ISAS tested a solar sail again as a sub-payload to the Akari (ASTRO-F) mission on 22 February 2006. However

1020-569: Is to have a solar sail mission to Jupiter after 2020. The first Japanese astronomy mission was the X-ray satellite Hakucho (CORSA-b), which was launched in 1979. Later ISAS moved into solar observation, radio astronomy through space VLBI and infrared astronomy. Active Missions: SOLAR-B , MAXI , SPRINT-A , CALET , XRISM Under Development: Retired: HALCA , ASTRO-F , ASTRO-EII , and ASTRO-H Cancelled(C)/Failed(F): ASTRO-E (F), ASTRO-G (C), Japan's infrared astronomy began with

1080-764: The H-II Transfer Vehicle six times. This cargo spacecraft was responsible for resupplying the Kibo Japanese Experiment Module on the International Space Station . To be able to launch smaller mission on JAXA developed a new solid-fueled rocket, the Epsilon as a replacement to the retired M-V . The maiden flight successfully happened in 2013. So far, the rocket has flown six times with one launch failure. In January 2017, JAXA attempted and failed to put

1140-616: The H-IIA (H "two" A) rocket from the former NASDA body as a medium-lift launch vehicle . JAXA has also developed a new medium-lift vehicle H3 . For smaller launch needs, JAXA uses the Epsilon rocket. For experiments in the upper atmosphere JAXA uses the SS-520 , S-520 , and S-310 sounding rockets . Historical, nowadays retired, JAXA orbital rockets are as follows: Mu rocket family ( M-V ) and H-IIB . Japan launched its first satellite, Ohsumi , in 1970, using ISAS' L-4S rocket. Prior to

1200-653: The Hiten lunar mission in 1990. The first Japanese interplanetary mission was the Mars Orbiter Nozomi (PLANET-B), which was launched in 1998. It passed Mars in 2003, but failed to reach Mars orbit due to maneuvering systems failures earlier in the mission. Currently interplanetary missions remain at the ISAS group under the JAXA umbrella. However, for FY 2008 JAXA is planning to set up an independent working group within

1260-598: The Ministry of Education, Culture, Sports, Science and Technology (MEXT). This article related to government in Japan is a stub . You can help Misplaced Pages by expanding it . H3 (rocket) The H3 Launch Vehicle is a Japanese expendable launch system . H3 launch vehicles are liquid-propellant rockets with strap-on solid rocket boosters and are launched from Tanegashima Space Center in Japan. Mitsubishi Heavy Industries (MHI) and JAXA are responsible for

SECTION 20

#1732765966383

1320-536: The inner Solar System , and emphasis has been put on magnetospheric and atmospheric research. The Mars explorer Nozomi (PLANET-B), which ISAS launched prior to the merger of the three aerospace institutes, became one of the earliest difficulties the newly formed JAXA faced. Nozomi ultimately passed 1,000 km from the surface of Mars. On 20 May 2010, the Venus Climate Orbiter Akatsuki (PLANET-C) and IKAROS solar sail demonstrator

1380-571: The magnetosphere , among other areas. NASDA, which was founded on 1 October 1969, had developed rockets , satellites, and also built the Japanese Experiment Module . The old NASDA headquarters were located at the current site of the Tanegashima Space Center , on Tanegashima Island , 115 kilometers south of Kyūshū . NASDA was mostly active in the field of communication satellite technology. However, since

1440-549: The 15-cm IRTS telescope which was part of the SFU multipurpose satellite in 1995. ISAS also gave ground support for the ESA Infrared Space Observatory (ISO) infrared mission. JAXA's first infrared astronomy satellite was the Akari spacecraft, with the pre-launch designation ASTRO-F . This satellite was launched on 21 February 2006. Its mission is infrared astronomy with a 68 cm telescope. This

1500-640: The ETS-VI and COMETS missions. In February 2018, JAXA announced a research collaboration with Sony to test a laser communication system from the Kibo module in late 2018. Testing of communication technologies remains to be one of JAXA's key duties in cooperation with NICT . Japanese National Research and Development Agencies The Japanese government has established National Research and Development Agencies ( Japanese : 国立研究開発法人 , romanized :  Kokuritsu Kenkyū Kaihatsu Hōjin ) that fall under

1560-585: The H-II, rather than an improved development like the H-IIA and H-IIB, which were based on the H-II. The design goal of the H3 is to increase launch capability at a lower cost than the H-IIA and H-IIB. To achieve this, an expander bleed cycle was used for the first time in the world for the first stage of the engine. Japan's first missions beyond Earth orbit were the 1985 Halley's comet observation spacecraft Sakigake (MS-T5) and Suisei (PLANET-A). To prepare for future missions, ISAS tested Earth swing by orbits with

1620-451: The H3 was authorized by the Japanese government on 17 May 2013. The H3 Launch Vehicle is being jointly developed by JAXA and Mitsubishi Heavy Industries (MHI) to launch a wide variety of commercial satellites. The H3 was designed with cheaper engines compared to the H-IIA , so that manufacturing the new launch vehicle would be faster, less risky, and more cost-effective. JAXA and Mitsubishi Heavy Industries were in charge of preliminary design,

1680-518: The H3-32, was cancelled in late 2018 when the performance of the H3-22 variant, sporting one less engine on the core booster, was found to be greater than anticipated, putting it close to the H3-32's performance. While the H3-32 would have provided greater performance, JAXA cited SpaceX 's experience with their Falcon 9 rocket, which routinely lifted commercial communications satellite payloads to less than

1740-541: The ISAS, and to dramatically improve its launch capability over previous licensed models. To achieve these two goals, a staged combustion cycle was adopted for the first stage engine, the LE-7 . The combination of the liquid hydrogen two-stage combustion cycle first stage engine and solid rocket boosters was carried over to its successor, the H-IIA and H-IIB and became the basic configuration of Japan's liquid fuel launch vehicles for 30 years, from 1994 to 2024. In 2003, JAXA

1800-603: The SRB-3 boosters ignition, although the main engines were successfully ignited. On the second launch attempt for the H3 Launch Vehicle on 7 March the vehicle launched at 1:37:55 AM UTC (Universal Time Coordinated). Shortly after the SRB-3 boosters separated from the rocket around two minutes into the flight, the rocket appeared to lose control and begin to tumble based on the views from the ground camera; however, based on subsequent analysis, this appears to be part of

1860-885: The Strategic Headquarters for Space Development (SHSD) in the Cabinet , led by the Prime Minister . In 2016, the National Space Policy Secretariat (NSPS) was set up by the Cabinet. JAXA was awarded the Space Foundation 's John L. "Jack" Swigert Jr., Award for Space Exploration in 2008. Planning interplanetary research missions can take many years. Due to the lag time between these interplanetary events and mission planning time, opportunities to gain new knowledge about

JAXA - Misplaced Pages Continue

1920-534: The client had to then load additional propellant onto their satellite for it to reach GEO, than a more expensive H3-32. As of October 2019 , MHI is considering contributing two variants for the Gateway project: an extended second stage variant, and the H3 Heavy variant which would comprise three first-stage liquid-fuel boosters strapped together, similar to Delta IV Heavy and Falcon Heavy . It would have

1980-643: The conception phase, ISAS scientists will see their instruments reaching Jupiter on the ESA-led JUICE (Jupiter Icy Moon Explorer) mission. JUICE is a reformulation of the ESA Ganymede orbiter from the Laplace project. JAXA's contribution includes providing components of the RPWI (Radio & Plasma Wave Investigation), PEP (Particle Environment Package), GALA (GAnymede Laser Altimeter) instruments. JAXA

2040-467: The cosmos might be lost. To prevent this, JAXA began commencing smaller and faster missions from 2010 onward. In 2012, new legislation extended JAXA's remit from peaceful purposes only to include some military space development, such as missile early warning systems. Political control of JAXA passed from MEXT to the Prime Minister's Cabinet Office through a new Space Strategy Office. JAXA uses

2100-712: The design, manufacture, and operation of the H3. The H3 is the world's first rocket to use an expander bleed cycle for the first stage engine. As of July 2015 , the minimum configuration is to carry a payload of up to 4,000 kg (8,800 lb) into Sun-synchronous orbit (SSO) for about 5 billion yen , and the maximum configuration is to carry more than 6,500 kg (14,300 lb) into geostationary transfer orbit (GTO). The H3-24 variant will deliver more than 6,000 kg (13,000 lb) of payload to lunar transfer orbit (TLI) and 8,800 kg (19,400 lb) of payload to geostationary transfer orbit (GTO)(∆V=1830 m/s). Mitsubishi Heavy Industries supervised

2160-451: The development and manufacture of the H3 rocket's airframe and liquid-fuel engines, while IHI Corporation developed and manufactured the liquid-fuel engine turbopumps and solid-fuel boosters, and Kawasaki Heavy Industries developed and manufactured the payload fairings . The carbon fiber and synthetic resin used for the solid fuel booster motor case and payload fairing were developed and manufactured by Toray . The development of

2220-485: The features of that configuration. The first digit represents the number of LE-9 engines on the main stage, either "2" or "3". The second digit indicates the number of SRB-3 solid rocket boosters attached to the base of the rocket and can be "0", "2", or "4". All layouts of the solid boosters are symmetrical. The letter at the end shows the length of the payload fairing, either short, or "S", or long, or "L". For example, an H3-24L has two engines, four solid rocket boosters, and

2280-509: The former ISAS's Mu rockets. Instead a H-2A from Tanegashima could launch it. As H-2A is more powerful, SOLAR-C could either be heavier or be stationed at L 1 ( Lagrange point 1). In 1997, Japan launched the HALCA (MUSES-B) mission, the world's first spacecraft dedicated to conduct space VLBI observations of pulsars, among others. To do so, ISAS set up a ground network around the world through international cooperation. The observation part of

2340-455: The gold standard geostationary transfer orbit (GTO) of 1,500 m/s (4,900 ft/s) of delta-V remaining to get to geostationary orbit , leaving the satellites themselves to make up the difference. As commercial clients were apparently willing to be flexible, JAXA proposed redefining their reference transfer orbit to something lower, believing commercial clients would prefer the less expensive (if slightly less capable) H3-22 rocket, even if

2400-496: The lander will wake up after a few days when sunlight should hit the solar panels. Two rovers, LEV 1 and 2, deployed during hovering just before final landing are working as expected with LEV-1 communicating independently to the ground stations. LEV-1 conducted seven hops over 107 minutes on the lunar surface. Images taken by LEV-2 show that it landed in the wrong attitude with loss of an engine nozzle during descent and even possible sustained damage to lander's Earth bound antenna which

2460-459: The lunar surface on 10 June 2009 at 18:25 UTC. JAXA launched its first lunar surface mission SLIM (Smart Lander for Investigating Moon) in 2023. It successfully soft landed on 19 January 2024 at 15:20 UTC, making Japan the 5th country to do so. The main goal of SLIM was to improve the accuracy of spacecraft landing on the Moon and to land a spacecraft within 100 meters of its target, which no spacecraft had achieved before. SLIM landed 55 meters from

JAXA - Misplaced Pages Continue

2520-476: The merger, ISAS used small Mu rocket family of solid-fueled launch vehicles, while NASDA developed larger liquid-fueled launchers. In the beginning, NASDA used licensed American models. The first model of liquid-fueled launch vehicle developed domestically in Japan was the H-II , introduced in 1994. NASDA developed the H-II with two goals in mind: to be able to launch satellites using only its own technology, such as

2580-408: The merger, ISAS was responsible for space and planetary research, while NAL was focused on aviation research. ISAS had been most successful in its space program in the field of X-ray astronomy during the 1980s and 1990s. Another successful area for Japan has been Very Long Baseline Interferometry (VLBI) with the HALCA mission. Additional success was achieved with solar observation and research of

2640-488: The mission lasted until 2003 and the satellite was retired at the end of 2005. In FY 2006, Japan funded the ASTRO-G as the succeeding mission. ASTRO-G was canceled in 2011. One of the primary duties of the former NASDA body was the testing of new space technologies, mostly in the field of communication. The first test satellite was ETS-I, launched in 1975. However, during the 1990s, NASDA was afflicted by problems surrounding

2700-577: The mission was to collect samples from a small near-Earth asteroid named 25143 Itokawa . The craft rendezvoused with the asteroid in September 2005. It was confirmed that the spacecraft successfully landed on the asteroid in November 2005, after some initial confusion regarding the incoming data. Hayabusa returned to Earth with samples from the asteroid on 13 June 2010. Hayabusa was the world's first spacecraft to return asteroid samples to Earth and

2760-498: The new JAXA: Japan's Institute of Space and Astronautical Science (ISAS), the National Aerospace Laboratory of Japan (NAL), and National Space Development Agency of Japan (NASDA). JAXA was formed as an Independent Administrative Institution administered by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Ministry of Internal Affairs and Communications (MIC). Before

2820-605: The night on the lunar surface while maintaining communication capabilities. At that time it was solar noon on the Moon so the temperature of the communications equipment was extremely high, so communication was terminated after only a short period of time. JAXA is now preparing for resumed operations, once the temperature has fallen sufficiently. The feat of surviving lunar night without a Radioisotope heater unit had only been achieved by some landers in Surveyor Program . Japan's planetary missions have so far been limited to

2880-402: The organization. New head for this group will be Hayabusa project manager Kawaguchi. Active Missions: PLANET-C , IKAROS , Hayabusa2 , BepiColombo , SLIM Under Development: MMX , DESTINY Retired: PLANET-B , SELENE , MUSES-C , LEV-1, LEV-2 Cancelled: LUNAR-A On 9 May 2003, Hayabusa (meaning Peregrine falcon ), was launched from an M-V rocket. The goal of

2940-558: The readiness of ground facilities, development of new technologies for the H3, and manufacturing. The main emphasis in design is cost reduction, with planned launch costs for customers in the range of around US$ 37 million. In 2015, the first H3 was planned to be launched in fiscal year 2020 in the H3-30 configuration (which lacks solid-rocket boosters), and in a later configuration with boosters in FY2021. The newly developed LE-9 engine

3000-526: The satellite market of Japan is completely open, the first time a Japanese company won a contract for a civilian communication satellite was in 2005. Another prime focus of the NASDA body is Earth climate observation. NASDA also trained the Japanese astronauts who flew with the US Space Shuttles . The Basic Space Law was passed in 2008, and the jurisdictional authority of JAXA moved from MEXT to

3060-564: The solar sail did not deploy fully. ISAS tested a solar sail again as a sub payload of the SOLAR-B launch at 23 September 2006, but contact with the probe was lost. The IKAROS solar sail was launched in May 2010 and successfully demonstrated solar sail technology in July. This made IKAROS the world's first spacecraft to successfully demonstrate solar sail technology in interplanetary space. The goal

SECTION 50

#1732765966383

3120-448: The target landing site, and JAXA announced that it was the world's first successful "pinpoint landing. Although it landed successfully, it landed with the solar panels oriented westwards, facing away from the Sun at the start of lunar day , thereby failing to generate enough power. The lander operated on internal battery power, which was fully drained that day. The mission's operators hope that

3180-485: The time. In November 2003, JAXA's first launch after its inauguration, H-IIA No. 6, failed, but all other H-IIA launches were successful, and as of February 2024, the H-IIA had successfully launched 47 of its 48 launches. JAXA plans to end H-IIA operations with H-IIA Flight No. 50 and retire it by March 2025. JAXA operated the H-IIB , an upgraded version of the H-IIA, from September 2009 to May 2020 and successfully launched

3240-492: The world's first spacecraft to make a round trip to a celestial body farther from Earth than the Moon. Hayabusa2 was launched in 2014 and returned samples from asteroid 162173 Ryugu to Earth in 2020. After Hiten in 1990, JAXA planned a lunar penetrator mission called LUNAR-A but after delays due to technical problems, the project was terminated in January 2007. The seismometer penetrator design for LUNAR-A may be reused in

3300-541: The year 2000 the launch of ISAS's X-ray observation satellite, ASTRO-E failed (as it failed at launch it never received a proper name). Then on 10 July 2005, JAXA was finally able to launch a new X-ray astronomy mission named Suzaku (ASTRO-EII). This launch was important for JAXA, because in the five years since the launch failure of the original ASTRO-E satellite, Japan was without an x-ray telescope . Three instruments were included in this satellite: an X-ray spectrometer (XRS), an X-ray imaging spectrometer (XIS), and

3360-536: Was formed by merging Japan's three space agencies to streamline Japan's space program, and JAXA took over operations of the H-IIA liquid-fueled launch vehicle, the M-V solid-fuel launch vehicle, and several observation rockets from each agency. The H-IIA is a launch vehicle that improved reliability while reducing costs by making significant improvements to the H-II, and the M-V was the world's largest solid-fuel launch vehicle at

3420-524: Was launched as the successor to Suzaku, which completed its mission a year before. Japan's solar astronomy started in the early 1980s with the launch of the Hinotori (ASTRO-A) X-ray mission. The Hinode (SOLAR-B) spacecraft, the follow-on to the joint Japan/US/UK Yohkoh (SOLAR-A) spacecraft, was launched on 23 September 2006 by JAXA. A SOLAR-C can be expected sometime after 2020. However no details are worked out yet other than it will not be launched with

3480-424: Was launched by a H-2A launch vehicle. On 7 December 2010, Akatsuki was unable to complete its Venus orbit insertion maneuver. Akatsuki finally entered Venus orbit on 7 December 2015, making it the first Japanese spacecraft to orbit another planet, sixteen years after the originally planned orbital insertion of Nozomi. One of Akatsuki's main goal is to uncover the mechanism behind Venus atmosphere's super-rotation ,

3540-402: Was put into sleep mode due to the approaching harsh lunar night where temperatures reach −120 °C (−184 °F). SLIM was expected to operate only for one lunar daylight period, which lasts for 14 Earth days, and the on-board electronics were not designed to withstand the nighttime temperatures on the Moon. On 25 February 2024, JAXA sent wake-up calls and found SLIM had successfully survived

3600-730: Was the most challenging and important development element. Firing tests of the LE-9 first-stage engine began in April 2017, with the first tests of the solid rocket boosters occurring in August 2018. On 21 January 2022, the launch of the first H3 was rescheduled to FY 2022 or later, citing technical problems regarding the first stage LE-9 engine. The H3 Launch Vehicle is a two-stage launch vehicle. The first stage uses liquid oxygen and liquid hydrogen as propellants and carries zero, two or four strap-on solid rocket boosters (SRBs) (derived from SRB-A ) using polybutadiene fuel. The first stage

#382617