Misplaced Pages

MIPS architecture

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The R10000 , code-named "T5", is a RISC microprocessor implementation of the MIPS IV instruction set architecture (ISA) developed by MIPS Technologies, Inc. (MTI), then a division of Silicon Graphics, Inc. (SGI). The chief designers are Chris Rowen and Kenneth C. Yeager. The R10000 microarchitecture is known as ANDES, an abbreviation for Architecture with Non-sequential Dynamic Execution Scheduling. The R10000 largely replaces the R8000 in the high-end and the R4400 elsewhere. MTI was a fabless semiconductor company ; the R10000 was fabricated by NEC and Toshiba . Previous fabricators of MIPS microprocessors such as Integrated Device Technology (IDT) and three others did not fabricate the R10000 as it was more expensive to do so than the R4000 and R4400.

#466533

146-574: MIPS ( Microprocessor without Interlocked Pipelined Stages ) is a family of reduced instruction set computer (RISC) instruction set architectures (ISA) developed by MIPS Computer Systems, now MIPS Technologies , based in the United States . There are multiple versions of MIPS, including MIPS I, II, III, IV, and V, as well as five releases of MIPS32/64 (for 32- and 64-bit implementations, respectively). The early MIPS architectures were 32-bit; 64-bit versions were developed later. As of April 2017,

292-606: A Harvard memory model , where the instruction stream and the data stream are conceptually separated; this means that modifying the memory where code is held might not have any effect on the instructions executed by the processor (because the CPU has a separate instruction and data cache ), at least until a special synchronization instruction is issued; CISC processors that have separate instruction and data caches generally keep them synchronized automatically, for backwards compatibility with older processors. Many early RISC designs also shared

438-516: A barrel shifter and hardware for confirming the prediction of conditional branches. The second pipeline is used to access the multiplier and divider. Multiplies are pipelined, and have a six-cycle latency for 32-bit integers and ten for 64-bit integers. Division is not pipelined. The divider uses a non-restoring algorithm that produces one bit per cycle. Latencies for 32-bit and 64-bit divides are 35 and 67 cycles, respectively. The floating-point unit (FPU) consists of four functional units, an adder,

584-427: A branch delay slot . Unless the branch delay slot is filled by an instruction performing useful work, an nop is substituted. MIPS I branch instructions compare the contents of a GPR (rs) against zero or another GPR (rt) as signed integers and branch if the specified condition is true. Control is transferred to the address computed by shifting the 16-bit offset left by two bits, sign-extending the 18-bit result, and adding

730-402: A load delay slot . The instruction in the load delay slot cannot use the data loaded by the load instruction. The load delay slot can be filled with an instruction that is not dependent on the load; a nop is substituted if such an instruction cannot be found. MIPS I has instructions to perform addition and subtraction. These instructions source their operands from two GPRs (rs and rt), and write

876-484: A load–store architecture in which the code for the register-register instructions (for performing arithmetic and tests) are separate from the instructions that access the main memory of the computer. The design of the CPU allows RISC computers few simple addressing modes and predictable instruction times that simplify design of the system as a whole. The conceptual developments of the RISC computer architecture began with

1022-413: A reduced instruction set computer ( RISC ) is a computer architecture designed to simplify the individual instructions given to the computer to accomplish tasks. Compared to the instructions given to a complex instruction set computer (CISC), a RISC computer might require more instructions (more code) in order to accomplish a task because the individual instructions are written in simpler code. The goal

1168-454: A 0.25 μm CMOS process with four levels of aluminum interconnect . The use of a new process does not mean that the R12000 was a simple die shrink with a tweaked microarchitecture; the layout of the die is optimized to take advantage of the 0.25 μm process. The NEC fabricated VR12000 contained 7.15 million transistors and measured 15.7 by 14.6 mm (229.22 mm ). The R12000A is

1314-654: A 0.25 μm process enabled the microprocessor to reach 250 MHz. Users of the R10000 include: The R10000 is a four-way superscalar design that implements register renaming and executes instructions out-of-order . Its design is a departure from previous MTI microprocessors such as the R4000, which is a much simpler scalar in-order design that relies largely on high clock rates for performance. The R10000 fetches four instructions every cycle from its instruction cache . These instructions are decoded and then placed into

1460-750: A 24-bit high-speed processor to use as the basis for a digital telephone switch . To reach their goal of switching 1 million calls per hour (300 per second) they calculated that the CPU required performance on the order of 12 million instructions per second (MIPS), compared to their fastest mainframe machine of the time, the 370/168 , which performed at 3.5 MIPS. The design was based on a study of IBM's extensive collection of statistics gathered from their customers. This demonstrated that code in high-performance settings made extensive use of processor registers , and that they often ran out of them. This suggested that additional registers would improve performance. Additionally, they noticed that compilers generally ignored

1606-477: A 32 KB instruction cache and a 32 KB data cache. The instruction cache is two-way set-associative and has a 128-byte line size. Instructions are partially decoded by appending four bits to each instruction (which have a length of 32 bits) before they are placed in the cache. The 32 KB data cache is dual-ported through two-way interleaving. It consists of two 16 KB banks , and each bank are two-way set-associative. The cache has 64-byte lines, uses

SECTION 10

#1732787206467

1752-413: A 32-bit ABI that resembles N32 more. A 1995 conference came up with MIPS EABI, for which the 32-bit version was quite similar. EABI inspired MIPS Technologies to propose a more radical "NUBI" ABI additionally reuse argument registers for the return value. MIPS EABI is supported by GCC but not LLVM, and neither supports NUBI. Reduced instruction set computer In electronics and computer science ,

1898-498: A 32-bit and a 64-bit architecture: MIPS32 and MIPS64. Both were introduced in 1999. MIPS32 is based on MIPS II with some additional features from MIPS III, MIPS IV, and MIPS V; MIPS64 is based on MIPS V. NEC , Toshiba and SiByte (later acquired by Broadcom ) each obtained licenses for MIPS64 as soon as it was announced. Philips , LSI Logic , IDT , Raza Microelectronics, Inc. , Cavium , Loongson Technology and Ingenic Semiconductor have since joined them. MIPS32/MIPS64 Release 5

2044-408: A 5-bit number, for 15 bits. If one of these registers is replaced by an immediate, there is still lots of room to encode the two remaining registers and the opcode. Common instructions found in multi-word systems, like INC and DEC , which reduce the number of words that have to be read before performing the instruction, are unnecessary in RISC as they can be accomplished with a single register and

2190-462: A 6-bit opcode. In addition to the opcode, R-type instructions specify three registers, a shift amount field, and a function field; I-type instructions specify two registers and a 16-bit immediate value; J-type instructions follow the opcode with a 26-bit jump target. The following are the three formats used for the core instruction set: MIPS I has instructions that load and store 8-bit bytes, 16-bit halfwords, and 32-bit words. Only one addressing mode

2336-524: A barebones core sufficient for a small embedded processor to supercomputer and cloud computing use with standard and chip designer–defined extensions and coprocessors. It has been tested in silicon design with the ROCKET SoC , which is also available as an open-source processor generator in the CHISEL language. In the early 1980s, significant uncertainties surrounded the RISC concept. One concern involved

2482-400: A better balancing of pipeline stages than before, making RISC pipelines significantly more efficient and allowing higher clock frequencies . Yet another impetus of both RISC and other designs came from practical measurements on real-world programs. Andrew Tanenbaum summed up many of these, demonstrating that processors often had oversized immediates. For instance, he showed that 98% of all

2628-552: A corresponding microMIPS32/64 version. A processor may implement microMIPS32/64 or both microMIPS32/64 and its corresponding MIPS32/64 subset. Starting with MIPS32/64 Release 6, support for MIPS16e ended, and microMIPS is the only form of code compression in MIPS. The base MIPS32 and MIPS64 architectures can be supplemented with a number of optional architectural extensions, which are collectively referred to as application-specific extensions (ASEs). These ASEs provide features that improve

2774-477: A derivative of the R12000 developed by SGI. Introduced in July 2000, it operates at 400 MHz and was fabricated by NEC a 0.18 μm process with aluminum interconnects . The R14000 is a further development of the R12000 announced in July 2001. The R14000 operates at 500 MHz, enabled by the 0.13 μm CMOS process with five levels of copper interconnect it is fabricated with. It features improvements to

2920-401: A different opcode. In contrast, a 32-bit machine has ample room to encode an immediate value, and doing so avoids the need to do a second memory read to pick up the value. This is why many RISC processors allow a 12- or 13-bit constant to be encoded directly into the instruction word. Assuming a 13-bit constant area, as is the case in the MIPS and RISC designs, another 19 bits are available for

3066-413: A multiplexed bus to a system controller, which would interface the microprocessors to their local memory and the rest of the system via a hypercube network. The R18000 improved the floating-point instruction queues and revised the floating-point unit to feature two multiply–add units, quadrupling the peak FLOPS count. Division and square-root would be performed in separate non-pipelined units in parallel to

SECTION 20

#1732787206467

3212-636: A multiplier, divide unit and square root unit. The adder and multiplier are pipelined, but the divide and square root units are not. Adds and multiplies have a latency of three cycles and the adder and multiplier can accept a new instruction every cycle. The divide unit has a 12- or 19-cycle latency, depending on whether the divide is single precision or double precision, respectively. The square root unit executes square root and reciprocal square root instructions. Square root instructions have an 18- or 33-cycle latency for single precision or double precision, respectively. A new square root instruction can be issued to

3358-464: A new data type, the Paired Single (PS), which consisted of two single-precision (32-bit) floating-point numbers stored in the existing 64-bit floating-point registers. Variants of existing floating-point instructions for arithmetic, compare and conditional move were added to operate on this data type in a SIMD fashion. New instructions were added for loading, rearranging and converting PS data. It

3504-493: A number of additional points. Among these was the fact that programs spent a significant amount of time performing subroutine calls and returns, and it seemed there was the potential to improve overall performance by speeding these calls. This led the Berkeley design to select a method known as register windows which can significantly improve subroutine performance although at the cost of some complexity. They also noticed that

3650-415: A pair of 32-bit registers called HI and LO, since they may execute separately from (and concurrently with) the other CPU instructions. For multiplication, the high- and low-order halves of the 64-bit product is written to HI and LO (respectively). For division, the quotient is written to LO and the remainder to HI. To access the results, a pair of instructions (Move from HI and Move from LO) is provided to copy

3796-514: A pair of 32-bit registers, HI and LO , are provided. There is a small set of instructions for copying data between the general-purpose registers and the HI/LO registers. The program counter has 32 bits. The two low-order bits always contain zero since MIPS I instructions are 32 bits long and are aligned to their natural word boundaries. Instructions are divided into three types: R (register), I (immediate), and J (jump). Every instruction starts with

3942-598: A paper on ways to improve microcoding, but later changed his mind and decided microcode itself was the problem. With funding from the DARPA VLSI Program , Patterson started the Berkeley RISC effort. The Program, practically unknown today, led to a huge number of advances in chip design, fabrication, and even computer graphics. Considering a variety of programs from their BSD Unix variant, the Berkeley team found, as had IBM, that most programs made no use of

4088-484: A particular strategy for implementing some RISC designs, and modern RISC designs generally do away with it (such as PowerPC and more recent versions of SPARC and MIPS). Some aspects attributed to the first RISC- labeled designs around 1975 include the observations that the memory-restricted compilers of the time were often unable to take advantage of features intended to facilitate manual assembly coding, and that complex addressing modes take many cycles to perform due to

4234-413: A pipelined processor and for code generation by an optimizing compiler. A common misunderstanding of the phrase "reduced instruction set computer" is that instructions are simply eliminated, resulting in a smaller set of instructions. In fact, over the years, RISC instruction sets have grown in size, and today many of them have a larger set of instructions than many CISC CPUs. Some RISC processors such as

4380-469: A reasonably sized constant in a 32-bit instruction word. Since many real-world programs spend most of their time executing simple operations, some researchers decided to focus on making those operations as fast as possible. The clock rate of a CPU is limited by the time it takes to execute the slowest sub-operation of any instruction; decreasing that cycle-time often accelerates the execution of other instructions. The focus on "reduced instructions" led to

4526-506: A sequence of simpler internal instructions. In the 68k, a full 1 ⁄ 3 of the transistors were used for this microcoding. In 1979, David Patterson was sent on a sabbatical from the University of California, Berkeley to help DEC's west-coast team improve the VAX microcode. Patterson was struck by the complexity of the coding process and concluded it was untenable. He first wrote

MIPS architecture - Misplaced Pages Continue

4672-503: A sequence of simpler operations doing the same thing. This was in part an effect of the fact that many designs were rushed, with little time to optimize or tune every instruction; only those used most often were optimized, and a sequence of those instructions could be faster than a less-tuned instruction performing an equivalent operation as that sequence. One infamous example was the VAX 's INDEX instruction. The Berkeley work also turned up

4818-457: A single complex instruction such as STRING MOVE , but hide those details from the compiler. The internal operations of a RISC processor are "exposed to the compiler", leading to the backronym 'Relegate Interesting Stuff to the Compiler'. Most RISC architectures have fixed-length instructions and a simple encoding, which simplifies fetch, decode, and issue logic considerably. This is among

4964-482: A single data memory cycle—compared to the "complex instructions" of CISC CPUs that may require dozens of data memory cycles in order to execute a single instruction. The term load–store architecture is sometimes preferred. Another way of looking at the RISC/CISC debate is to consider what is exposed to the compiler. In a CISC processor, the hardware may internally use registers and flag bit in order to implement

5110-613: A very small set of instructions—but these designs are very different from classic RISC designs, so they have been given other names such as minimal instruction set computer (MISC) or transport triggered architecture (TTA). RISC architectures have traditionally had few successes in the desktop PC and commodity server markets, where the x86 -based platforms remain the dominant processor architecture. However, this may change, as ARM-based processors are being developed for higher performance systems. Manufacturers including Cavium , AMD, and Qualcomm have released server processors based on

5256-486: Is 640 MB/s as it requires some cycles to transmit addresses. The system interface controller supports glue-less symmetrical multiprocessing (SMP) of up to four microprocessors. Systems using the R10000 with external logic can scale to hundreds of processors. An example of such a system is the Origin 2000 . The R10000 consists of approximately 6.8 million transistors, of which approximately 4.4 million are contained in

5402-468: Is a load/store architecture (also known as a register-register architecture ); except for the load/store instructions used to access memory , all instructions operate on the registers. MIPS I has thirty-two 32-bit general-purpose registers (GPR). Register $ 0 is hardwired to zero and writes to it are discarded. Register $ 31 is the link register . For integer multiplication and division instructions, which run asynchronously from other instructions,

5548-673: Is a derivative of the R10000 started by MIPS and completed by SGI. It was fabricated by NEC and Toshiba. The version fabricated by NEC is called the VR12000. The microprocessor was introduced in November 1998. It is available at 270, 300 and 360 MHz. The R12000 was developed as a stop-gap solution following the cancellation of the "Beast" project, which intended to deliver a successor to the R10000. R12000 users include NEC, Siemens-Nixdorf , SGI and Tandem Computers (and later Compaq, after their acquisition of Tandem). The R12000 improves upon

5694-426: Is an 800 MHz version, introduced on 4 February 2004. Later, a 900 MHz version was introduced, and this version was, for some time, the fastest publicly known R16000A—SGI later revealed there were 1.0 GHz R16000s shipped to selected customers. R16000 users included HP and SGI. SGI used the microprocessor in their Fuel and Tezro workstations; and the Origin 3000 servers and supercomputers. HP used

5840-726: Is called a doubleword, and MIPS III extended the general-purpose registers, HI/LO registers, and program counter to 64 bits to support it. New instructions were added to load and store doublewords, to perform integer addition, subtraction, multiplication, division, and shift operations on them, and to move doubleword between the GPRs and HI/LO registers. For shared-memory multiprocessing, the Load Linked Double Word , and Store Conditional Double Word instructions were added. Existing instructions originally defined to operate on 32-bit words were redefined, where necessary, to sign-extend

5986-536: Is denoted by the .d suffix. MIPS II removed the load delay slot and added several sets of instructions. For shared-memory multiprocessing, the Synchronize Shared Memory , Load Linked Word , and Store Conditional Word instructions were added. A set of Trap-on-Condition instructions were added. These instructions caused an exception if the evaluated condition is true. All existing branch instructions were given branch-likely versions that executed

MIPS architecture - Misplaced Pages Continue

6132-438: Is implementation-defined), to exceed or meet IEEE 754 accuracy requirements (respectively). The FP reciprocal and reciprocal square-root instructions do not comply with IEEE 754 accuracy requirements, and produce results that differ from the required accuracy by one or two units of last place (it is implementation defined). These instructions serve applications where instruction latency is more important than accuracy. MIPS V added

6278-453: Is making the transition to RISC-V . The first version of the MIPS architecture was designed by MIPS Computer Systems for its R2000 microprocessor, the first MIPS implementation. Both MIPS and the R2000 were introduced together in 1985. When MIPS II was introduced, MIPS was renamed MIPS I to distinguish it from the new version. MIPS Computer Systems ' R6000 microprocessor (1989) was

6424-471: Is only defined for 32-bit MIPS, but GCC has created a 64-bit variation called O64. For 64-bit, the N64 ABI by Silicon Graphics is most commonly used. The most important improvement is that eight registers are now available for argument passing; it also increases the number of floating-point registers to 32. There is also an ILP32 version called N32, which uses 32-bit pointers for smaller code, analogous to

6570-427: Is protected by 9-bits of error correcting code (ECC). The cache and bus operate at the same clock rate as the R10000, whose maximum frequency was 200 MHz. At 200 MHz, the bus yielded a peak bandwidth of 3.2 GB/s. The cache is two-way set associative, but to avoid a high pin count, the R10000 predicts which way is accessed. MIPS IV is a 64-bit architecture, but to reduce cost the R10000 does not implement

6716-428: Is supported: base + displacement. Since MIPS I is a 32-bit architecture, loading quantities fewer than 32 bits requires the datum to be either sign-extended or zero-extended to 32 bits. The load instructions suffixed by "unsigned" perform zero extension; otherwise sign extension is performed. Load instructions source the base from the contents of a GPR (rs) and write the result to another GPR (rt). Store instructions source

6862-586: Is the last derivative of the R10000. It is developed by SGI and fabricated by NEC in their 0.11 μm process with eight levels of copper interconnect. The microprocessor was introduced on 9 January 2003, debuting at 700 MHz for the Fuel and also used in their Onyx4 Ultimate Vision . In April 2003, a 600 MHz version was introduced for the Origin 350 . Improvements are 64 KB instruction and data caches. The R16000A refers to R16000 microprocessors with clock rates higher than 700 MHz. The first R16000A

7008-452: Is to offset the need to process more instructions by increasing the speed of each instruction, in particular by implementing an instruction pipeline , which may be simpler to achieve given simpler instructions. The key operational concept of the RISC computer is that each instruction performs only one function (e.g. copy a value from memory to a register). The RISC computer usually has many (16 or 32) high-speed, general-purpose registers with

7154-550: The Adapteva Epiphany , have an optional short, feature-reduced compressed instruction set . Generally, these instructions expose a smaller number of registers and fewer bits for immediate values, and often use a two-operand format to eliminate one register number from instructions. A two-operand format in a system with 16 registers requires 8 bits for register numbers, leaving another 8 for an opcode or other uses. The SH5 also follows this pattern, albeit having evolved in

7300-623: The DEC Alpha , AMD Am29000 , Intel i860 and i960 , Motorola 88000 , IBM POWER , and, slightly later, the IBM/Apple/Motorola PowerPC . Many of these have since disappeared due to them often offering no competitive advantage over others of the same era. Those that remain are often used only in niche markets or as parts of other systems; of the designs from these traditional vendors, only SPARC and POWER have any significant remaining market. The ARM architecture has been

7446-555: The Fugaku . A number of systems, going back to the 1960s, have been credited as the first RISC architecture, partly based on their use of the load–store approach. The term RISC was coined by David Patterson of the Berkeley RISC project, although somewhat similar concepts had appeared before. The CDC 6600 designed by Seymour Cray in 1964 used a load–store architecture with only two addressing modes (register+register, and register+immediate constant) and 74 operation codes, with

SECTION 50

#1732787206467

7592-627: The IBM 801 project in the late 1970s, but these were not immediately put into use. Designers in California picked up the 801 concepts in two seminal projects, Stanford MIPS and Berkeley RISC . These were commercialized in the 1980s as the MIPS and SPARC systems. IBM eventually produced RISC designs based on further work on the 801 concept, the IBM POWER architecture , PowerPC , and Power ISA . As

7738-529: The RT PC —was less competitive than others, but the success of SPARC renewed interest within IBM, which released new RISC systems by 1990 and by 1995 RISC processors were the foundation of a $ 15 billion server industry. By the later 1980s, the new RISC designs were easily outperforming all traditional designs by a wide margin. At that point, all of the other vendors began RISC efforts of their own. Among these were

7884-420: The write-back protocol, and is virtually indexed and physically tagged to enable the cache to be indexed in the same clock cycle and to maintain coherency with the secondary cache. The external secondary unified cache supported capacities between 512 KB and 16 MB. It is implemented with commodity synchronous static random access memory (SSRAM). The cache is accessed via its own 128-bit bus that

8030-504: The x32 ABI . Both run under the 64-bit mode of the CPU. The N32 and N64 ABIs pass the first eight arguments to a function in the registers $ a0 - $ a7 ; subsequent arguments are passed on the stack. The return value (or a pointer to it) is stored in the registers $ v0 ; a second return value may be stored in $ v1 . In both the N32 and N64 ABIs all registers are considered to be 64-bits wide. A few attempts have been made to replace O32 with

8176-431: The 32-bit and 64-bit designs making them available without any licensing or royalty fees as well as granting participants licenses to existing MIPS patents. In March 2019, one version of the architecture was made available under a royalty-free license, but later that year the program was shut down again. In March 2021, Wave Computing announced that the development of the MIPS architecture has ceased. The company has joined

8322-409: The 32-bit results to permit words and doublewords to be treated identically by most instructions. Among those instructions redefined was Load Word . In MIPS III it sign-extends words to 64 bits. To complement Load Word , a version that zero-extends was added. The R instruction format's inability to specify the full shift distance for 64-bit shifts (its 5-bit shift amount field is too narrow to specify

8468-408: The 32-bit sign-extended result to the sum of the program counter (instruction address) and 8 10 . Jumps have two versions: absolute and register-indirect. Absolute jumps ("Jump" and "Jump and Link") compute the address to which control is transferred by shifting the 26-bit instr_index left by two bits and concatenating the 28-bit result with the four high-order bits of the address of the instruction in

8614-707: The ARM architecture. ARM further partnered with Cray in 2017 to produce an ARM-based supercomputer. On the desktop, Microsoft announced that it planned to support the PC version of Windows 10 on Qualcomm Snapdragon -based devices in 2017 as part of its partnership with Qualcomm. These devices will support Windows applications compiled for 32-bit x86 via an x86 processor emulator that translates 32-bit x86 code to ARM64 code . Apple announced they will transition their Mac desktop and laptop computers from Intel processors to internally developed ARM64-based SoCs called Apple silicon ;

8760-597: The Berkeley RISC-II system. The US government Committee on Innovations in Computing and Communications credits the acceptance of the viability of the RISC concept to the success of the SPARC system. By 1989 many RISC CPUs were available; competition lowered their price to $ 10 per MIPS in large quantities, much less expensive than the sole sourced Intel 80386 . The performance of IBM's RISC CPU—only available in

8906-447: The CPU and FPU convert single- and double-precision floating-point numbers into doubleword integers and vice versa. MIPS IV is the fourth version of the architecture. It is a superset of MIPS III and is compatible with all existing versions of MIPS. MIPS IV was designed to mainly improve floating-point (FP) performance. To improve access to operands, an indexed addressing mode (base + index, both sourced from GPRs) for FP loads and stores

SECTION 60

#1732787206467

9052-584: The GPRs. The floating general registers (FGRs) were extended to 64 bits and the requirement for instructions to use even-numbered register only was removed. This is incompatible with earlier versions of the architecture; a bit in the floating-point control/status register is used to operate the MIPS III floating-point unit (FPU) in a MIPS I- and II-compatible mode. The floating-point control registers were not extended for compatibility. The only new floating-point instructions added were those to copy doublewords between

9198-448: The ISA, who in partnership with TI, GEC, Sharp, Nokia, Oracle and Digital would develop low-power and embedded RISC designs, and target those market segments, which at the time were niche. With the rise in mobile, automotive, streaming, smart device computing, ARM became the most widely used ISA, the company estimating almost half of all CPUs shipped in history have been ARM. Confusion around

9344-502: The MIPS16e ASE. A disadvantage of MIPS16e is that it requires a mode switch before any of its 16-bit instructions can be processed. microMIPS adds versions of the most-frequently used 32-bit instructions that are encoded as 16-bit instructions. This allows programs to intermix 16- and 32-bit instructions without having to switch modes. microMIPS was introduced alongside of MIPS32/64 Release 3, and each subsequent release of MIPS32/64 has

9490-515: The MIPS32 and MIPS64 specifications, as were cache control instructions . For the purpose of cache control, both SYNC and SYNCI instructions were prepared. MIPS32/MIPS64 Release 6 in 2014 added the following: Removed infrequently used instructions: Reorganized the instruction encoding, freeing space for future expansions. The microMIPS32/64 architectures are supersets of the MIPS32 and MIPS64 architectures (respectively) designed to replace

9636-584: The Or Immediate instruction to load a 32-bit immediate into a register. MIPS I has instructions to perform left and right logical shifts and right arithmetic shifts. The operand is obtained from a GPR (rt), and the result is written to another GPR (rd). The shift distance is obtained from either a GPR (rs) or a 5-bit "shift amount" (the "sa" field). MIPS I has instructions for signed and unsigned integer multiplication and division. These instructions source their operands from two GPRs and write their results to

9782-592: The PowerPC have instruction sets as large as the CISC IBM System/370 , for example; conversely, the DEC PDP-8 —clearly a CISC CPU because many of its instructions involve multiple memory accesses—has only 8 basic instructions and a few extended instructions. The term "reduced" in that phrase was intended to describe the fact that the amount of work any single instruction accomplishes is reduced—at most

9928-423: The R10000 microarchitecture by: inserting an extra pipeline stage to improve clock frequency by resolving a critical path; increasing the number of entries in the branch history table, improving prediction; modifying the instruction queues so they take into account the age of a queued instruction, enabling older instructions to be executed before newer ones if possible. The R12000 was fabricated by NEC and Toshiba in

10074-531: The R16000A in their NonStop Himalaya S-Series fault-tolerant servers inherited from Tandem via Compaq. The R18000 is a canceled further development of the R10000 microarchitecture that featured major improvements by Silicon Graphics, Inc. described at the Hot Chips symposium in 2001. The R18000 was designed specifically for SGI's ccNUMA servers and supercomputers. Each node would have two R18000s connected via

10220-529: The R4000 (and the R4400 derivative) were widely used in workstation and server computers, especially by its largest user, Silicon Graphics . Other uses of the R4000 included high-end embedded systems and supercomputers. MIPS III was eventually implemented by a number of embedded microprocessors. Quantum Effect Design 's R4600 (1993) and its derivatives was widely used in high-end embedded systems and low-end workstations and servers. MIPS Technologies' R4200 (1994),

10366-815: The R5000 from Toshiba, the R5900, was used in Sony Computer Entertainment's Emotion Engine , which powered its PlayStation 2 game console. Announced on October 21, 1996, at the Microprocessor Forum 1996 alongside the MIPS Digital Media Extensions (MDMX) extension, MIPS V was designed to improve the performance of 3D graphics transformations. In the mid-1990s, a major use of non-embedded MIPS microprocessors were graphics workstations from Silicon Graphics. MIPS V

10512-913: The R8000 began at Silicon Graphics, Inc. and it was only used in high-end workstations and servers for scientific and technical applications where high performance on large floating-point workloads was important. Later implementations were the MIPS Technologies R10000 (1996) and the Quantum Effect Devices R5000 (1996) and RM7000 (1998). The R10000, fabricated and sold by NEC Electronics and Toshiba, and its derivatives were used by NEC, Pyramid Technology, Silicon Graphics, and Tandem Computers (among others) in workstations, servers, and supercomputers. The R5000 and R7000 found use in high-end embedded systems, personal computers, and low-end workstations and servers. A derivative of

10658-584: The RISC-V foundation and future processor designs will be based on the RISC-V architecture. In spite of this, some licensees such as Loongson continue with new extension of MIPS-compatible ISAs on their own. In January 2024, Loongson won a case over rights to use MIPS architecture. MIPS is a modular architecture supporting up to four coprocessors (CP0/1/2/3). In MIPS terminology, CP0 is the System Control Coprocessor (an essential part of

10804-531: The SysAD or Avalanche configuration for backwards compatibility with R10000 systems. The R18000 would have a 1 MB four-way set-associative secondary cache to be included on-die; supplemented by an optional tertiary cache built from single data rate (SDR) or double data rate (DDR) SSRAM or DDR SDRAM with capacities of 2 to 64 MB. The L3 cache would have its cache tags, equivalent to 400 KB, located on-die to reduce latency. The L3 cache would be accessed via

10950-535: The VAX. They followed this up with the 40,760-transistor, 39-instruction RISC-II in 1983, which ran over three times as fast as RISC-I. As the RISC project began to become known in Silicon Valley , a similar project began at Stanford University in 1981. This MIPS project grew out of a graduate course by John L. Hennessy , produced a functioning system in 1983, and could run simple programs by 1984. The MIPS approach emphasized an aggressive clock cycle and

11096-478: The base from the contents of a GPR (rs) and the store data from another GPR (rt). All load and store instructions compute the memory address by summing the base with the sign-extended 16-bit immediate. MIPS I requires all memory accesses to be aligned to their natural word boundaries, otherwise an exception is signaled. To support efficient unaligned memory accesses, there are load/store word instructions suffixed by "left" or "right". All load instructions are followed by

11242-561: The basic clock cycle being 10 times faster than the memory access time. Partly due to the optimized load–store architecture of the CDC 6600, Jack Dongarra says that it can be considered a forerunner of modern RISC systems, although a number of other technical barriers needed to be overcome for the development of a modern RISC system. Michael J. Flynn views the first RISC system as the IBM 801 design, begun in 1975 by John Cocke and completed in 1980. The 801 developed out of an effort to build

11388-477: The branch delay slot. Register-indirect jumps transfer control to the instruction at the address sourced from a GPR (rs). The address sourced from the GPR must be word-aligned, else an exception is signaled after the instruction in the branch delay slot is executed. Branch and jump instructions that link (except for "Jump and Link Register") save the return address to GPR 31. The "Jump and Link Register" instruction permits

11534-409: The callee needs to save its arguments, but the registers are not stored there by the caller. The return value is stored in register $ v0 ; a second return value may be stored in $ v1 . The ABI took shape in 1990 and was last updated in 1994. This perceived slowness, along with an antique floating-point model with only 16 registers, has encouraged the proliferation of many other calling conventions. It

11680-472: The characteristic of having a branch delay slot , an instruction space immediately following a jump or branch. The instruction in this space is executed, whether or not the branch is taken (in other words the effect of the branch is delayed). This instruction keeps the ALU of the CPU busy for the extra time normally needed to perform a branch. Nowadays the branch delay slot is considered an unfortunate side effect of

11826-441: The constants in a program would fit in 13 bits , yet many CPU designs dedicated 16 or 32 bits to store them. This suggests that, to reduce the number of memory accesses, a fixed length machine could store constants in unused bits of the instruction word itself, so that they would be immediately ready when the CPU needs them (much like immediate addressing in a conventional design). This required small opcodes in order to leave room for

11972-530: The contents of HI or LO to a GPR. These instructions are interlocked: reads of HI and LO do not proceed past an unfinished arithmetic instruction that will write to HI and LO. Another pair of instructions (Move to HI or Move to LO) copies the contents of a GPR to HI and LO. These instructions are used to restore HI and LO to their original state after exception handling. Instructions that read HI or LO must be separated by two instructions that do not write to HI or LO. All MIPS I control flow instructions are followed by

12118-493: The current version of MIPS is MIPS32/64 Release 6. MIPS32/64 primarily differs from MIPS I–V by defining the privileged kernel mode System Control Coprocessor in addition to the user mode architecture. The MIPS architecture has several optional extensions: MIPS-3D , a simple set of floating-point SIMD instructions dedicated to common 3D tasks; MDMX (MaDMaX), a more extensive integer SIMD instruction set using 64-bit floating-point registers; MIPS16e, which adds compression to

12264-423: The definition of RISC deriving from the formulation of the term, along with the tendency to opportunistically categorize processor architectures with relatively few instructions (or groups of instructions) as RISC architectures, led to attempts to define RISC as a design philosophy. One attempt to do so was expressed as the following: A RISC processor has an instruction set that is designed for efficient execution by

12410-447: The divide unit every 20 or 35 cycles for single precision and double precision respectively. Reciprocal square roots have longer latencies, 30 to 52 cycles for single precision (32-bit) and double precision (64-bit) respectively. The floating-point register file contains sixty-four 64-bit registers, of which thirty-two are architectural and the remaining are rename registers. The adder has its own dedicated read and write ports, whereas

12556-472: The early 1980s, leading, for example, to the iron law of processor performance . Since 2010, a new open standard instruction set architecture (ISA), Berkeley RISC-V , has been under development at the University of California, Berkeley, for research purposes and as a free alternative to proprietary ISAs. As of 2014, version 2 of the user space ISA is fixed. The ISA is designed to be extensible from

12702-643: The early 1980s. Few of these designs began by using RISC microprocessors . The varieties of RISC processor design include the ARC processor, the DEC Alpha, the AMD Am29000 , the ARM architecture, the Atmel AVR , Blackfin , Intel i860 , Intel i960 , LoongArch , Motorola 88000 , the MIPS architecture, PA-RISC, Power ISA, RISC-V , SuperH , and SPARC. RISC processors are used in supercomputers , such as

12848-413: The efficiency and performance of certain workloads, such as digital signal processing . MIPS has had several calling conventions, especially on the 32-bit platform. The O32 ABI is the most commonly-used ABI, owing to its status as the original System V ABI for MIPS. It is strictly stack-based, with only four registers $ a0 - $ a3 available to pass arguments. Space on the stack is reserved in case

12994-517: The entire physical or virtual address . Instead, it has a 40-bit physical address and a 44-bit virtual address, thus it is capable of addressing 1 TB of physical memory and 16 TB of virtual memory . The R10000 uses the Avalanche bus , a 64-bit bus that operates at frequencies up to 100 MHz. Avalanche is a multiplexed address and data bus, so at 100 MHz it yields a maximum theoretical bandwidth of 800 MB/s, but its peak bandwidth

13140-411: The exception handler. MIPS has 32 floating-point registers. Two registers are paired for double precision numbers. Odd numbered registers cannot be used for arithmetic or branching, just as part of a double precision register pair, resulting in 16 usable registers for most instructions (moves/copies and loads/stores were not affected). Single precision is denoted by the .s suffix, while double precision

13286-528: The first MIPS II implementation. Designed for servers, the R6000 was fabricated and sold by Bipolar Integrated Technology , but was a commercial failure. During the mid-1990s, many new 32-bit MIPS processors for embedded systems were MIPS II implementations because the introduction of the 64-bit MIPS III architecture in 1991 left MIPS II as the newest 32-bit MIPS architecture until MIPS32 was introduced in 1999. MIPS Computer Systems ' R4000 microprocessor (1991)

13432-535: The first such computers, using the Apple M1 processor, were released in November 2020. Macs with Apple silicon can run x86-64 binaries with Rosetta 2 , an x86-64 to ARM64 translator. Outside of the desktop arena, however, the ARM RISC architecture is in widespread use in smartphones, tablets and many forms of embedded devices. While early RISC designs differed significantly from contemporary CISC designs, by 2000

13578-509: The highest-performing CPUs in the RISC line were almost indistinguishable from the highest-performing CPUs in the CISC line. RISC architectures are now used across a range of platforms, from smartphones and tablet computers to some of the world's fastest supercomputers such as Fugaku , the fastest on the TOP500 list as of November 2020 , and Summit , Sierra , and Sunway TaihuLight ,

13724-413: The immediate value 1. The original RISC-I format remains a canonical example of the concept. It uses 7 bits for the opcode and a 1-bit flag for conditional codes, the following 5 bits for the destination register, and the next five for the first operand. This leaves 14 bits, the first of which indicates whether the following 13 contain an immediate value or uses only five of them to indicate a register for

13870-403: The instruction encoding. This leaves ample room to indicate both the opcode and one or two registers. Register-to-register operations, mostly math and logic, require enough bits to encode the two or three registers being used. Most processors use the three-operand format, of the form A = B + C , in which case three registers numbers are needed. If the processor has 32 registers, each one requires

14016-533: The instruction in the branch delay slot only if the branch is taken. These instructions improve performance in certain cases by allowing useful instructions to fill the branch delay slot. Doubleword load and store instructions for COP1–3 were added. Consistent with other memory access instructions, these loads and stores required the doubleword to be naturally aligned. The instruction set for the floating point coprocessor also had several instructions added to it. An IEEE 754-compliant floating-point square root instruction

14162-512: The instruction queues can accept up to four instructions from the decoder, avoiding any bottlenecks. The instruction queues issue their instructions to their execution units dynamically depending on the availability of operands and resources. Each of the queues except for the load/store queue can issue up to two instructions every cycle to its execution units. The load/store queue can only issue one instruction. The R10000 can thus issue up to five instructions every cycle. The integer unit consists of

14308-400: The instruction stream to reduce the space programs take up; and MIPS MT, which adds multithreading capability. Computer architecture courses in universities and technical schools often study the MIPS architecture. The architecture greatly influenced later RISC architectures such as Alpha . In March 2021, MIPS announced that the development of the MIPS architecture had ended as the company

14454-445: The instruction word which could then be used to select among a larger set of registers. The telephone switch program was canceled in 1975, but by then the team had demonstrated that the same design would offer significant performance gains running just about any code. In simulations, they showed that a compiler tuned to use registers wherever possible would run code about three times as fast as traditional designs. Somewhat surprisingly,

14600-405: The integer register file and three pipelines , two integer, one load store. The integer register file is 64 bits wide and contains 64 entries, of which 32 are architectural registers and 32 are rename registers which implement register renaming. The register file has seven read ports and three write ports. Both integer pipelines have an adder and a logic unit. However, only the first pipeline has

14746-412: The integer, floating-point or load/store instruction queues depending on the type of the instruction. The decode unit is assisted by the pre-decoded instructions from the instruction cache, which append five bits to every instruction to enable the unit to quickly identify which execution unit the instruction is executed in, and rearrange the format of the instruction to optimize the decode process. Each of

14892-428: The large variety of instructions in the 68k. Patterson's early work pointed out an important problem with the traditional "more is better" approach; even those instructions that were critical to overall performance were being delayed by their trip through the microcode. If the microcode was removed, the programs would run faster. And since the microcode ultimately took a complex instruction and broke it into steps, there

15038-482: The late 1970s, the 801 had become well-known in the industry. This coincided with new fabrication techniques that were allowing more complex chips to come to market. The Zilog Z80 of 1976 had 8,000 transistors, whereas the 1979 Motorola 68000 (68k) had 68,000. These newer designs generally used their newfound complexity to expand the instruction set to make it more orthogonal. Most, like the 68k, used microcode to do this, reading instructions and re-implementing them as

15184-494: The main goals of the RISC approach. Some of this is possible only due to the contemporary move to 32-bit formats. For instance, in a typical program, over 30% of all the numeric constants are either 0 or 1, 95% will fit in one byte, and 99% in a 16-bit value. When computers were based on 8- or 16-bit words, it would be difficult to have an immediate combined with the opcode in a single memory word, although certain instructions like increment and decrement did this implicitly by using

15330-422: The majority of mathematical instructions were simple assignments; only 1 ⁄ 3 of them actually performed an operation like addition or subtraction. But when those operations did occur, they tended to be slow. This led to far more emphasis on the underlying arithmetic data unit, as opposed to previous designs where the majority of the chip was dedicated to control and microcode. The resulting Berkeley RISC

15476-537: The microarchitecture of the R12000 by supporting double data rate (DDR) SSRAMs for the secondary cache and a 200 MHz system bus. The R14000A is a further development of the R14000 announced in February 2002. It operates at 600 MHz, dissipates approximately 17 W, and was fabricated by NEC Corporation in a 0.13 μm CMOS process with seven levels of copper interconnect. The R16000, code-named "N0",

15622-558: The mid-1980s. The Acorn ARM1 appeared in April 1985, MIPS R2000 appeared in January 1986, followed shortly thereafter by Hewlett-Packard 's PA-RISC in some of their computers. In the meantime, the Berkeley effort had become so well known that it eventually became the name for the entire concept. In 1987 Sun Microsystems began shipping systems with the SPARC processor, directly based on

15768-563: The most significant characteristics of RISC processors was that external memory was only accessible by a load or store instruction. All other instructions were limited to internal registers. This simplified many aspects of processor design: allowing instructions to be fixed-length, simplifying pipelines, and isolating the logic for dealing with the delay in completing a memory access (cache miss, etc.) to only two instructions. This led to RISC designs being referred to as load–store architectures. Some CPUs have been specifically designed to have

15914-657: The most widely adopted RISC ISA, initially intended to deliver higher-performance desktop computing, at low cost, and in a restricted thermal package, such as in the Acorn Archimedes , while featuring in the Super Computer League tables , its initial, relatively, lower power and cooling implementation was soon adapted to embedded applications, such as laser printer raster image processing. Acorn, in partnership with Apple Inc, and VLSI, creating ARM Ltd, in 1990, to share R&D costs and find new markets for

16060-522: The multiplier shares its with the divider and square root unit. The divide and square root units use the SRT algorithm. The MIPS IV ISA has a multiply–add instruction. This instruction is implemented by the R10000 with a bypass — the result of the multiply can bypass the register file and be delivered to the add pipeline as an operand, thus it is not a fused multiply–add , and has a four-cycle latency. The R10000 has two comparatively large on-chip caches,

16206-472: The multiply–add units. The system interface and memory hierarchy was also significantly reworked. It would have a 52-bit virtual address and a 48-bit physical address. The bidirectional multiplexed address and data system bus of the earlier models would be replaced by two unidirectional DDR links, a 64-bit multiplexed address and write path and a 128-bit read path. The paths could be shared with another R18000 through multiplexing. The bus could also be configured in

16352-494: The next three on that list. R10000 The R10000 was introduced in January 1996 at clock frequencies of 175 MHz and 195 MHz. A 150 MHz version was introduced in the O2 product line in 1997, but discontinued shortly after due to customer preference for the 175 MHz version. The R10000 was not available in large volumes until later in the year due to fabrication problems at MIPS's foundries. The 195 MHz version

16498-540: The opcode was 0 and the last 6 bits contained the actual code; those that used an immediate value used the normal opcode field at the front. One drawback of 32-bit instructions is reduced code density, which is more adverse a characteristic in embedded computing than it is in the workstation and server markets RISC architectures were originally designed to serve. To address this problem, several architectures, such as SuperH (1992), ARM thumb (1994), MIPS16e (2004), Power Variable Length Encoding ISA (2006), RISC-V , and

16644-531: The opposite direction, having added longer 32-bit instructions to an original 16-bit encoding. The most characteristic aspect of RISC is executing at least one instruction per cycle . Single-cycle operation is described as "the rapid execution of simple functions that dominate a computer's instruction stream", thus seeking to deliver an average throughput approaching one instruction per cycle for any single instruction stream. Other features of RISC architectures include: RISC designs are also more likely to feature

16790-471: The possibility of using a 339-pin multi-chip module (MCM) containing the microprocessor die and 1 MB of cache. The R10000 was extended by multiple successive derivatives. All derivatives after the R12000 have their clock frequency kept as low as possible to maintain power dissipation in the 15 to 20 W range so they can be densely packaged in SGI's high performance computing (HPC) systems. The R12000

16936-484: The primary caches. The die measures 16.640 by 17.934 mm, for a die area of 298.422 mm . It is fabricated in a 0.35 μm process and packaged in 599-pad ceramic land grid array (LGA). Before the R10000 was introduced, the Microprocessor Report , covering the 1994 Microprocessor Forum, reported that it was packaged in a 527-pin ceramic pin grid array (CPGA); and that vendors also investigated

17082-606: The processor that is implementation-defined in MIPS I–V), CP1 is an optional floating-point unit (FPU) and CP2/3 are optional implementation-defined coprocessors (MIPS III removed CP3 and reused its opcodes for other purposes). For example, in the PlayStation video game console, CP2 is the Geometry Transformation Engine (GTE), which accelerates the processing of geometry in 3D computer graphics. MIPS

17228-570: The projects matured, many similar designs, produced in the mid-to-late 1980s and early 1990s, such as ARM , PA-RISC , and Alpha , created central processing units that increased the commercial utility of the Unix workstation and of embedded processors in the laser printer , the router , and similar products. In the minicomputer market, companies that included Celerity Computing , Pyramid Technology , and Ridge Computers began offering systems designed according to RISC or RISC-like principles in

17374-497: The required additional memory accesses. It was argued that such functions would be better performed by sequences of simpler instructions if this could yield implementations small enough to leave room for many registers, reducing the number of slow memory accesses. In these simple designs, most instructions are of uniform length and similar structure, arithmetic operations are restricted to CPU registers and only separate load and store instructions access memory. These properties enable

17520-562: The result to a third GPR (rd). Alternatively, addition can source one of the operands from a 16-bit immediate (which is sign-extended to 32 bits). The instructions for addition and subtraction have two variants: by default, an exception is signaled if the result overflows; instructions with the "unsigned" suffix do not signal an exception. The overflow check interprets the result as a 32-bit two's complement integer. MIPS I has instructions to perform bitwise logical AND, OR, XOR, and NOR. These instructions source their operands from two GPRs and write

17666-413: The result to a third GPR. By default, the operands are interpreted as signed integers. The variants of these instructions that are suffixed with "unsigned" interpret the operands as unsigned integers (even those that source an operand from the sign-extended 16-bit immediate). The Load Immediate Upper instruction copies the 16-bit immediate into the high-order 16 bits of a GPR. It is used in conjunction with

17812-427: The result to a third GPR. The AND, OR, and XOR instructions can alternatively source one of the operands from a 16-bit immediate (which is zero-extended to 32 bits). The Set on relation instructions write one or zero to the destination register if the specified relation is true or false. These instructions source their operands from two GPRs or one GPR and a 16-bit immediate (which is sign-extended to 32 bits), and write

17958-402: The resulting machine being called a "reduced instruction set computer" (RISC). The goal was to make instructions so simple that they could easily be pipelined, in order to achieve a single clock throughput at high frequencies . This contrasted with CISC designs whose "crucial arithmetic operations and register transfers" were considered difficult to pipeline. Later, it was noted that one of

18104-410: The return address to be saved to any writable GPR. MIPS I has two instructions for software to signal an exception: System Call and Breakpoint. System Call is used by user mode software to make kernel calls; and Breakpoint is used to transfer control to a debugger via the kernel's exception handler. Both instructions have a 20-bit Code field that can contain operating environment-specific information for

18250-508: The same code would run about 50% faster even on existing machines due to the improved register use. In practice, their experimental PL/8 compiler, a slightly cut-down version of PL/I , consistently produced code that ran much faster on their existing mainframes. A 32-bit version of the 801 was eventually produced in a single-chip form as the IBM ROMP in 1981, which stood for 'Research OPD [Office Products Division] Micro Processor'. This CPU

18396-475: The second half of the 1980s, and led the designers of the MIPS-X to put it this way in 1987: The goal of any instruction format should be: 1. simple decode, 2. simple decode, and 3. simple decode. Any attempts at improved code density at the expense of CPU performance should be ridiculed at every opportunity. Competition between RISC and conventional CISC approaches was also the subject of theoretical analysis in

18542-408: The second operand. A more complex example is the MIPS encoding, which used only 6 bits for the opcode, followed by two 5-bit registers. The remaining 16 bits could be used in two ways, one as a 16-bit immediate value, or as a 5-bit shift value (used only in shift operations, otherwise zero) and the remaining 6 bits as an extension on the opcode. In the case of register-to-register arithmetic operations,

18688-433: The shift distance for doublewords) required MIPS III to provide three 64-bit versions of each MIPS I shift instruction. The first version is a 64-bit version of the original shift instructions, used to specify constant shift distances of 0–31 bits. The second version is similar to the first, but adds 32 10 the shift amount field's value so that constant shift distances of 32–63 bits can be specified. The third version obtains

18834-544: The shift distance from the six low-order bits of a GPR. MIPS III added a supervisor privilege level in between the existing kernel and user privilege levels. This feature only affected the implementation-defined System Control Processor (Coprocessor 0). MIPS III removed the Coprocessor 3 (CP3) support instructions, and reused its opcodes for the new doubleword instructions. The remaining coprocessors gained instructions to move doublewords between coprocessor registers and

18980-747: The total to eight. FP comparison and branch instructions were redefined so they could specify which condition bit was written or read (respectively); and the delay slot in between an FP branch that read the condition bit written to by a prior FP comparison was removed. Support for partial predication was added in the form of conditional move instructions for both GPRs and FPRs; and an implementation could choose between having precise or imprecise exceptions for IEEE 754 traps. MIPS IV added several new FP arithmetic instructions for both single- and double-precision FPNs: fused-multiply add or subtract, reciprocal, and reciprocal square-root. The FP fused-multiply add or subtract instructions perform either one or two roundings (it

19126-459: The use of memory; a single instruction from a traditional processor like the Motorola 68k may be written out as perhaps a half dozen of the simpler RISC instructions. In theory, this could slow the system down as it spent more time fetching instructions from memory. But by the mid-1980s, the concepts had matured enough to be seen as commercially viable. Commercial RISC designs began to emerge in

19272-514: The use of the pipeline, making sure it could be run as "full" as possible. The MIPS system was followed by the MIPS-X and in 1984 Hennessy and his colleagues formed MIPS Computer Systems to produce the design commercially. The venture resulted in a new architecture that was also called MIPS and the R2000 microprocessor in 1985. The overall philosophy of the RISC concept was widely understood by

19418-441: The vast majority of the available instructions, especially orthogonal addressing modes. Instead, they selected the fastest version of any given instruction and then constructed small routines using it. This suggested that the majority of instructions could be removed without affecting the resulting code. These two conclusions worked in concert; removing instructions would allow the instruction opcodes to be shorter, freeing up bits in

19564-495: The window "down" by eight, to the set of eight registers used by that procedure, and the return moves the window back. The Berkeley RISC project delivered the RISC-I processor in 1982. Consisting of only 44,420 transistors (compared with averages of about 100,000 in newer CISC designs of the era), RISC-I had only 32 instructions, and yet completely outperformed any other single-chip design, with estimated performance being higher than

19710-411: Was added, as were prefetch instructions for performing memory prefetching and specifying cache hints (these supported both the base + offset and base + index addressing modes). MIPS IV added several features to improve instruction-level parallelism. To alleviate the bottleneck caused by a single condition bit, seven condition code bits were added to the floating-point control and status register, bringing

19856-650: Was added. It supported both single- and double-precision operands. A set of instructions that converted single- and double-precision floating-point numbers to 32-bit words were added. These complemented the existing conversion instructions by allowing the IEEE rounding mode to be specified by the instruction instead of the Floating Point Control and Status Register. MIPS III is a backwards-compatible extension of MIPS II that added support for 64-bit memory addressing and integer operations. The 64-bit data type

20002-568: Was announced on December 6, 2012. According to the Product Marketing Director at MIPS, Release 4 was skipped because the number four is perceived as unlucky in many Asian cultures. In December 2018, Wave Computing, the new owner of the MIPS architecture, announced that MIPS ISA would be open-sourced in a program dubbed the MIPS Open initiative. The program was intended to open up access to the most recent versions of both

20148-406: Was based on MIPS V and retains all of its features as an optional Coprocessor 1 (FPU) feature called Paired-Single. When MIPS Technologies was spun-out of Silicon Graphics in 1998, it refocused on the embedded market. Through MIPS V, each successive version was a strict superset of the previous version, but this property was found to be a problem, and the architecture definition was changed to define

20294-498: Was based on gaining performance through the use of pipelining and aggressive use of register windowing. In a traditional CPU, one has a small number of registers, and a program can use any register at any time. In a CPU with register windows, there are a huge number of registers, e.g., 128, but programs can only use a small number of them, e.g., eight, at any one time. A program that limits itself to eight registers per procedure can make very fast procedure calls : The call simply moves

20440-598: Was completed by the integer-only MDMX extension to provide a complete system for improving the performance of 3D graphics applications. MIPS V implementations were never introduced. On May 12, 1997, Silicon Graphics announced the H1 ("Beast") and H2 ("Capitan") microprocessors. The former was to have been the first MIPS V implementation, and was due to be introduced in the first half of 1999. The H1 and H2 projects were later combined and eventually canceled in 1998. While there have not been any MIPS V implementations, MIPS64 Release 1 (1999)

20586-468: Was designed for "mini" tasks, and found use in peripheral interfaces and channel controllers on later IBM computers. It was also used as the CPU in the IBM RT PC in 1986, which turned out to be a commercial failure. Although the 801 did not see widespread use in its original form, it inspired many research projects, including ones at IBM that would eventually lead to the IBM POWER architecture . By

20732-600: Was designed for embedded systems, laptop, and personal computers. A derivative, the R4300i, fabricated by NEC Electronics , was used in the Nintendo 64 game console. The Nintendo 64, along with the PlayStation , were among the highest volume users of MIPS architecture processors in the mid-1990s. The first MIPS IV implementation was the MIPS Technologies R8000 microprocessor chipset (1994). The design of

20878-432: Was in short supply throughout 1996, and was priced at US$ 3,000 as a result. On 25 September 1996, SGI announced that R10000s fabricated by NEC between March and the end of July that year were faulty, drawing too much current and causing systems to shut down during operation. SGI recalled 10,000 R10000s that had shipped in systems as a result, which impacted the company's earnings. In 1997, a version of R10000 fabricated in

21024-474: Was no reason the compiler couldn't do this instead. These studies suggested that, even with no other changes, one could make a chip with 1 ⁄ 3 fewer transistors that would run faster. In the original RISC-I paper they noted: Skipping this extra level of interpretation appears to enhance performance while reducing chip size. It was also discovered that, on microcoded implementations of certain architectures, complex operations tended to be slower than

21170-522: Was the first MIPS III implementation. It was designed for use in personal, workstation, and server computers. MIPS Computer Systems aggressively promoted the MIPS architecture and R4000, establishing the Advanced Computing Environment (ACE) consortium to advance its Advanced RISC Computing (ARC) standard, which aimed to establish MIPS as the dominant personal computing platform. ARC found little success in personal computers, but

21316-434: Was the first instruction set to exploit floating-point SIMD with existing resources. The first release of MIPS32, based on MIPS II, added conditional moves, prefetch instructions , and other features from the R4000 and R5000 families of 64-bit processors. The first release of MIPS64 adds a MIPS32 mode to run 32-bit code. The MUL and MADD ( multiply-add ) instructions, previously available in some implementations, were added to

#466533