Misplaced Pages

Peatland

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A peatland is a type of wetland whose soils consist of organic matter from decaying plants, forming layers of peat . Peatlands arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia . Peatlands are unusual landforms that derive mostly from biological rather than physical processes, and can take on characteristic shapes and surface patterning.

#119880

217-424: The formation of peatlands is primarily controlled by climatic conditions such as precipitation and temperature, although terrain relief is a major factor as waterlogging occurs more easily on flatter ground and in basins. Peat formation typically initiates as a paludification of a mineral soil forests, terrestrialisation of lakes, or primary peat formation on bare soils on previously glaciated areas. A peatland that

434-454: A climate change feedback . The emissions from thawing permafrost will have a sufficient impact on the climate to impact global carbon budgets . It is difficult to accurately predict how much greenhouse gases the permafrost releases because of the different thaw processes are still uncertain. There is widespread agreement that the emissions will be smaller than human-caused emissions and not large enough to result in runaway warming . Instead,

651-407: A 2022 review concluded that every 1 °C (1.8 °F) of global warming would cause 0.04 °C (0.072 °F) and 0.11 °C (0.20 °F) from abrupt thaw by the year 2100 and 2300. Around 4 °C (7.2 °F) of global warming, abrupt (around 50 years) and widespread collapse of permafrost areas could occur, resulting in an additional warming of 0.2–0.4 °C (0.36–0.72 °F). As

868-499: A channel around 11 micron wavelength and primarily give information about cloud tops. Due to the typical structure of the atmosphere, cloud-top temperatures are approximately inversely related to cloud-top heights, meaning colder clouds almost always occur at higher altitudes. Further, cloud tops with a lot of small-scale variation are likely to be more vigorous than smooth-topped clouds. Various mathematical schemes, or algorithms, use these and other properties to estimate precipitation from

1085-544: A climate where the mean annual soil surface temperature is between −5 and 0 °C (23 and 32 °F). In the moist-wintered areas mentioned before, there may not even be discontinuous permafrost down to −2 °C (28 °F). Discontinuous permafrost is often further divided into extensive discontinuous permafrost, where permafrost covers between 50 and 90 percent of the landscape and is usually found in areas with mean annual temperatures between −2 and −4 °C (28 and 25 °F), and sporadic permafrost, where permafrost cover

1302-405: A concern downwind of the warm lakes within the cold cyclonic flow around the backside of extratropical cyclones . Lake-effect snowfall can be locally heavy. Thundersnow is possible within a cyclone's comma head and within lake effect precipitation bands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation. On

1519-602: A consequence of changes in physical and chemical compositions. The change in soil strongly affects the sensitive vegetation and forest die-off is common. The short-term effect is a decrease in biodiversity but the long-term effect, since these encroachments are hard to reverse, is a loss of habitat. Poor knowledge about peatlands' sensitive hydrology and lack of nutrients often lead to failing plantations, resulting in increasing pressure on remaining peatlands. Tropical peatland vegetation varies with climate and location. Three different characterizations are mangrove woodlands present in

1736-705: A dramatic effect on agriculture. All plants need at least some water to survive, therefore rain (being the most effective means of watering) is important to agriculture. While a regular rain pattern is usually vital to healthy plants, too much or too little rainfall can be harmful, even devastating to crops. Drought can kill crops and increase erosion, while overly wet weather can cause harmful fungus growth. Plants need varying amounts of rainfall to survive. For example, certain cacti require small amounts of water, while tropical plants may need up to hundreds of inches of rain per year to survive. In areas with wet and dry seasons, soil nutrients diminish and erosion increases during

1953-531: A fifth of both the industrial and the polluted sites (1000 and 2200–4800) are expected to start thawing in the future even if the warming does not increase from its 2020 levels. Only about 3% more sites would start thawing between now and 2050 under the climate change scenario consistent with the Paris Agreement goals, RCP2.6 , but by 2100, about 1100 more industrial facilities and 3500 to 5200 contaminated sites are expected to start thawing even then. Under

2170-541: A further $ 1.32 billion. In particular, fewer than 20% of railways would be at high risk by 2100 under 1.5 °C (2.7 °F), yet this increases to 60% at 2 °C (3.6 °F), while under SSP5-8.5, this level of risk is met by mid-century. For much of the 20th century, it was believed that permafrost would "indefinitely" preserve anything buried there, and this made deep permafrost areas popular locations for hazardous waste disposal. In places like Canada's Prudhoe Bay oil field, procedures were developed documenting

2387-685: A greater carbon sequestration capacity. The carbon sequestration abilities of wetlands can be improved through restoration and protection strategies, but it takes several decades for these restored ecosystems to become comparable in carbon storage to peatlands and other forms of natural wetlands. Studies highlight the critical role of peatlands in biodiversity conservation and hydrological stability. These ecosystems are unique habitats for diverse species , including specific insects and amphibians , and act as natural water reservoirs , releasing water during dry periods to sustain nearby freshwater ecosystems and agriculture . The exchange of carbon between

SECTION 10

#1732773213120

2604-425: A layer of above-freezing air exists with sub-freezing air both above and below. This causes the partial or complete melting of any snowflakes falling through the warm layer. As they fall back into the sub-freezing layer closer to the surface, they re-freeze into ice pellets. However, if the sub-freezing layer beneath the warm layer is too small, the precipitation will not have time to re-freeze, and freezing rain will be

2821-645: A major climate tipping point in what was known as a clathrate gun hypothesis , but are now no longer believed to play any role in projected climate change. At the Last Glacial Maximum , continuous permafrost covered a much greater area than it does today, covering all of ice-free Europe south to about Szeged (southeastern Hungary ) and the Sea of Azov (then dry land) and East Asia south to present-day Changchun and Abashiri . In North America, only an extremely narrow belt of permafrost existed south of

3038-416: A mean annual temperature of −2 °C (28.4 °F) or below. In the coldest regions, the depth of continuous permafrost can exceed 1,400 m (4,600 ft). It typically exists beneath the so-called active layer , which freezes and thaws annually, and so can support plant growth, as the roots can only take hold in the soil that's thawed. Active layer thickness is measured during its maximum extent at

3255-541: A minimum thickness of at least 2 m and a short diameter of at least 10 m. First recorded North American observations of this phenomenon were by European scientists at Canning River (Alaska) in 1919. Russian literature provides an earlier date of 1735 and 1739 during the Great North Expedition by P. Lassinius and Khariton Laptev , respectively. Russian investigators including I.A. Lopatin, B. Khegbomov, S. Taber and G. Beskow had also formulated

3472-423: A net cooling effect on the atmosphere. The water table position of a peatland is the main control of its carbon release to the atmosphere. When the water table rises after a rainstorm, the peat and its microbes are submerged under water inhibiting access to oxygen, reducing CO 2 release via respiration. Carbon dioxide release increases when the water table falls lower, such as during a drought, as this increases

3689-404: A non-precipitating combination is a colloid .) Two processes, possibly acting together, can lead to air becoming saturated with water vapor: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers . Moisture that

3906-447: A peatland can be dry). A peatland that is still capable of forming new peat is called a mire , while drained and converted peatlands might still have a peat layer but are not considered mires as the formation of new peat has ceased. There are two types of mire: bog and fen . A bog is a mire that, due to its raised location relative to the surrounding landscape, obtains all its water solely from precipitation ( ombrotrophic ). A fen

4123-543: A permafrost zone or region. This is because only slightly more than half of this area is defined as a continuous permafrost zone, where 90%–100% of the land is underlain by permafrost. Around 20% is instead defined as discontinuous permafrost, where the coverage is between 50% and 90%. Finally, the remaining <30% of permafrost regions consists of areas with 10%–50% coverage, which are defined as sporadic permafrost zones, and some areas that have isolated patches of permafrost covering 10% or less of their area. Most of this area

4340-411: A physical barrier such as a mountain ( orographic lift ). Conductive cooling occurs when the air comes into contact with a colder surface, usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation , either by the air or by the surface underneath. Evaporative cooling occurs when moisture

4557-416: A quarter of global peatland area. This involves cutting drainage ditches to lower the water table with the intended purpose of enhancing the productivity of forest cover or for use as pasture or cropland. Agricultural uses for mires include the use of natural vegetation for hay crop or grazing, or the cultivation of crops on a modified surface. In addition, the commercial extraction of peat for energy production

SECTION 20

#1732773213120

4774-644: A result of developing land use and agriculture. During the El Niño -event in 1997–1998 more than 24,400 km of peatland was lost to fires in Indonesia alone from which 10,000 km was burnt in Kalimantan and Sumatra. The output of CO 2 was estimated to 0.81–2.57 Gt, equal to 13–40% of that year's global output from fossil fuel burning. Indonesia is now considered the third-biggest contributor to global CO 2 emissions, caused primarily by these fires. With

4991-561: A severe fire can release up to 4,000 t of CO 2 /ha. Burning events in tropical peatlands are becoming more frequent due to large-scale drainage and land clearance and in the past ten years, more than 2 million hectares was burnt in Southeast Asia alone. These fires last typically for 1–3 months and release large amounts of CO 2 . Indonesia is one of the countries suffering from peatland fires, especially during years with ENSO -related drought, an increasing problem since 1982 as

5208-567: A single year. A significant portion of the annual precipitation in any particular place (no weather station in Africa or South America were considered) falls on only a few days, typically about 50% during the 12 days with the most precipitation. The Köppen classification depends on average monthly values of temperature and precipitation. The most commonly used form of the Köppen classification has five primary types labeled A through E. Specifically,

5425-409: A slow-falling drizzle , which has been observed as Rain puddles at its equator and polar regions. Precipitation is a major component of the water cycle , and is responsible for depositing most of the fresh water on the planet. Approximately 505,000 km (121,000 cu mi) of water falls as precipitation each year, 398,000 km (95,000 cu mi) of it over the oceans. Given

5642-463: A small atmospheric carbon dioxide sink through the photosynthesis of peat vegetation, which outweighs their release of greenhouse gases. On the other hand, most mires are generally net emitters of methane and nitrous oxide. Due to the continued CO 2 sequestration over millennia, and because of the longer atmospheric lifespan of the CO 2 molecules compared with methane and nitrous oxide, peatlands have had

5859-752: A subject of research. Although the ice is clear, scattering of light by the crystal facets and hollows/imperfections mean that the crystals often appear white in color due to diffuse reflection of the whole spectrum of light by the small ice particles. The shape of the snowflake is determined broadly by the temperature and humidity at which it is formed. Rarely, at a temperature of around −2 °C (28 °F), snowflakes can form in threefold symmetry—triangular snowflakes. The most common snow particles are visibly irregular, although near-perfect snowflakes may be more common in pictures because they are more visually appealing. No two snowflakes are alike, as they grow at different rates and in different patterns depending on

6076-476: A substantial amount of organic matter, where humic acid dominates. Humic materials are able to store very large amounts of water, making them an essential component in the peat environment, contributing to an increased amount of carbon storage due to the resulting anaerobic condition. If the peatland is dried from long-term cultivation and agricultural use, it will lower the water table and the increased aeration will subsequently release carbon. Upon extreme drying,

6293-407: A variety of datasets possessing different formats, time/space grids, periods of record and regions of coverage, input datasets, and analysis procedures, as well as many different forms of dataset version designators. In many cases, one of the modern multi-satellite data sets is the best choice for general use. The likelihood or probability of an event with a specified intensity and duration is called

6510-489: A warming climate these burnings are expected to increase in intensity and number. This is a result of a dry climate together with an extensive rice farming project, called the Mega Rice Project , started in the 1990s, which converted 1 Mha of peatlands to rice paddies . Forest and land was cleared by burning and 4000 km of channels drained the area. Drought and acidification of the lands led to bad harvest and

6727-432: A way that preserves the hydrological state of a mire, the anthropogenic use of mires' resources can avoid significant greenhouse gas emissions . However, continued drainage will result in increased release of carbon, contributing to global warming. As of 2016, it was estimated that drained peatlands account for around 10% of all greenhouse gas emissions from agriculture and forestry. Palm oil has increasingly become one of

Peatland - Misplaced Pages Continue

6944-605: A year. In 2006, the cost of adapting Inuvialuit homes to permafrost thaw was estimated at $ 208/m if they were built at pile foundations, and $ 1,000/m if they didn't. At the time, the average area of a residential building in the territory was around 100 m . Thaw-induced damage is also unlikely to be covered by home insurance , and to address this reality, territorial government currently funds Contributing Assistance for Repairs and Enhancements (CARE) and Securing Assistance for Emergencies (SAFE) programs, which provide long- and short-term forgivable loans to help homeowners adapt. It

7161-545: Is blanket bog where precipitation is very high i.e., in maritime climates inland near the coasts of the north-east and south Pacific, and the north-west and north-east Atlantic. In the sub-tropics, mires are rare and restricted to the wettest areas. Mires can be extensive in the tropics, typically underlying tropical rainforest (for example, in Kalimantan , the Congo Basin and Amazon basin ). Tropical peat formation

7378-517: Is soil or underwater sediment which continuously remains below 0 °C (32 °F) for two years or more: the oldest permafrost had been continuously frozen for around 700,000 years. Whilst the shallowest permafrost has a vertical extent of below a meter (3 ft), the deepest is greater than 1,500 m (4,900 ft). Similarly, the area of individual permafrost zones may be limited to narrow mountain summits or extend across vast Arctic regions. The ground beneath glaciers and ice sheets

7595-420: Is IC. Occult deposition occurs when mist or air that is highly saturated with water vapour interacts with the leaves of trees or shrubs it passes over. Stratiform or dynamic precipitation occurs as a consequence of slow ascent of air in synoptic systems (on the order of cm/s), such as over surface cold fronts , and over and ahead of warm fronts . Similar ascent is seen around tropical cyclones outside of

7812-410: Is RA, while the coding for rain showers is SHRA. Ice pellets or sleet are a form of precipitation consisting of small, translucent balls of ice. Ice pellets are usually (but not always) smaller than hailstones. They often bounce when they hit the ground, and generally do not freeze into a solid mass unless mixed with freezing rain . The METAR code for ice pellets is PL . Ice pellets form when

8029-482: Is a grassland biome located in semi-arid to semi-humid climate regions of subtropical and tropical latitudes, with rainfall between 750 and 1,270 mm (30 and 50 in) a year. They are widespread on Africa, and are also found in India, the northern parts of South America, Malaysia, and Australia. The humid subtropical climate zone is where winter rainfall (and sometimes snowfall) is associated with large storms that

8246-480: Is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions. There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling , and evaporative cooling. Adiabatic cooling occurs when air rises and expands. The air can rise due to convection , large-scale atmospheric motions, or

8463-449: Is a time when air quality improves, freshwater quality improves, and vegetation grows significantly. Soil nutrients diminish and erosion increases. Animals have adaptation and survival strategies for the wetter regime. The previous dry season leads to food shortages into the wet season, as the crops have yet to mature. Developing countries have noted that their populations show seasonal weight fluctuations due to food shortages seen before

8680-582: Is accompanied by plentiful precipitation year-round. The Mediterranean climate regime resembles the climate of the lands in the Mediterranean Basin, parts of western North America, parts of western and southern Australia, in southwestern South Africa and in parts of central Chile. The climate is characterized by hot, dry summers and cool, wet winters. A steppe is a dry grassland. Subarctic climates are cold with continuous permafrost and little precipitation. Precipitation, especially rain, has

8897-433: Is actively forming peat is called a mire . All types of mires share the common characteristic of being saturated with water, at least seasonally with actively forming peat , while having their own ecosystem. Peatlands are the largest natural carbon store on land. Covering around 3 million km globally, they sequester 0.37 gigatons (Gt) of carbon dioxide (CO 2 ) a year. Peat soils store over 600 Gt of carbon, more than

Peatland - Misplaced Pages Continue

9114-620: Is added to the air through evaporation, which forces the air temperature to cool to its wet-bulb temperature , or until it reaches saturation. The main ways water vapor is added to the air are: wind convergence into areas of upward motion, precipitation or virga falling from above, daytime heating evaporating water from the surface of oceans, water bodies or wet land, transpiration from plants, cool or dry air moving over warmer water, and lifting air over mountains. Coalescence occurs when water droplets fuse to create larger water droplets, or when water droplets freeze onto an ice crystal, which

9331-538: Is already considered "warm" permafrost, making it particularly unstable. Qinghai–Tibet Plateau has a population of over 10 million people – double the population of permafrost regions in the Arctic – and over 1 million m of buildings are located in its permafrost area, as well as 2,631 km of power lines , and 580 km of railways. There are also 9,389 km of roads, and around 30% are already sustaining damage from permafrost thaw. Estimates suggest that under

9548-682: Is also located in high mountain regions, with the Tibetan Plateau being a prominent example. Only a minority of permafrost exists in the Southern Hemisphere , where it is consigned to mountain slopes like in the Andes of Patagonia , the Southern Alps of New Zealand, or the highest mountains of Antarctica . Permafrost contains large amounts of dead biomass that have accumulated throughout millennia without having had

9765-473: Is also possible for subsurface alpine permafrost to be covered by warmer, vegetation-supporting soil. Alpine permafrost is particularly difficult to study, and systematic research efforts did not begin until the 1970s. Consequently, there remain uncertainties about its geography. As recently as 2009, permafrost had been discovered in a new area – Africa's highest peak, Mount Kilimanjaro (4,700 m (15,400 ft) above sea level and approximately 3° south of

9982-559: Is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle , rain , sleet , snow , ice pellets , graupel and hail . Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity ), so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation; their water vapor does not condense sufficiently to precipitate, so fog and mist do not fall. (Such

10199-419: Is associated with a wide range of issues, and International Permafrost Association (IPA) exists to help address them. It convenes International Permafrost Conferences and maintains Global Terrestrial Network for Permafrost , which undertakes special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinates international field programmes and networks. As recent warming deepens

10416-437: Is associated with their warm front is often extensive, forced by weak upward vertical motion of air over the frontal boundary which condenses as it cools and produces precipitation within an elongated band, which is wide and stratiform , meaning falling out of nimbostratus clouds. When moist air tries to dislodge an arctic air mass, overrunning snow can result within the poleward side of the elongated precipitation band . In

10633-444: Is because carbon can be released through either aerobic or anaerobic respiration , which results in carbon dioxide (CO 2 ) or methane (CH 4 ) emissions, respectively. While methane lasts less than 12 years in the atmosphere, its global warming potential is around 80 times larger than that of CO 2 over a 20-year period and about 28 times larger over a 100-year period. While only a small fraction of permafrost carbon will enter

10850-429: Is decreasing as well; as of 2019, ~97% of permafrost under Arctic ice shelves is becoming warmer and thinner. Based on high agreement across model projections, fundamental process understanding, and paleoclimate evidence, it is virtually certain that permafrost extent and volume will continue to shrink as the global climate warms, with the extent of the losses determined by the magnitude of warming. Permafrost thaw

11067-507: Is difficult because the heat of the building (or pipeline ) can spread to the soil, thawing it. As ice content turns to water, the ground's ability to provide structural support is weakened, until the building is destabilized. For instance, during the construction of the Trans-Siberian Railway , a steam engine factory complex built in 1901 began to crumble within a month of operations for these reasons. Additionally, there

SECTION 50

#1732773213120

11284-487: Is equally distributed through the year. Some areas with pronounced rainy seasons will see a break in rainfall mid-season when the Intertropical Convergence Zone or monsoon trough move poleward of their location during the middle of the warm season. When the wet season occurs during the warm season, or summer, rain falls mainly during the late afternoon and early evening hours. The wet season

11501-407: Is especially prevalent in the tropics. Peatlands release the greenhouse gas methane which has strong global warming potential . However, subtropical wetlands have shown high CO 2 binding per mol of released methane, which is a function that counteracts global warming. Tropical peatlands are suggested to contain about 100 Gt carbon, corresponding to more than 50% of the carbon present as CO 2 in

11718-494: Is estimated to be between the equivalent of 12.4 (best case) to 76.6 t CO 2 /ha (worst case). Tropical peatland converted to palm oil plantation can remain a net source of carbon to the atmosphere after 12 years. In their natural state, peatlands are resistant to fire. Drainage of peatlands for palm oil plantations creates a dry layer of flammable peat. As peat is carbon dense, fires occurring in compromised peatlands release extreme amounts of both carbon dioxide and toxic smoke into

11935-620: Is expected that cumulative greenhouse gas emissions from permafrost thaw will be smaller than the cumulative anthropogenic emissions, yet still substantial on a global scale, with some experts comparing them to emissions caused by deforestation . The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14–175 billion tonnes of carbon dioxide per 1 °C (1.8 °F) of warming. For comparison, by 2019, annual anthropogenic emissions of carbon dioxide alone stood around 40 billion tonnes. A major review published in

12152-420: Is expected to be lost "over decades and centuries". The exact amount of carbon that will be released due to warming in a given permafrost area depends on depth of thaw, carbon content within the thawed soil, physical changes to the environment, and microbial and vegetation activity in the soil. Notably, estimates of carbon release alone do not fully represent the impact of permafrost thaw on climate change. This

12369-435: Is expected to thaw, affecting all their inhabitants (currently 3.3 million people). Consequently, a wide range of infrastructure in permafrost areas is threatened by the thaw. By 2050, it's estimated that nearly 70% of global infrastructure located in the permafrost areas would be at high risk of permafrost thaw, including 30–50% of "critical" infrastructure. The associated costs could reach tens of billions of dollars by

12586-416: Is filled by 2.5 cm (0.98 in) of rain, with overflow flowing into the outer cylinder. Plastic gauges have markings on the inner cylinder down to 1 ⁄ 4  mm (0.0098 in) resolution, while metal gauges require use of a stick designed with the appropriate 1 ⁄ 4  mm (0.0098 in) markings. After the inner cylinder is filled, the amount inside is discarded, then filled with

12803-681: Is forbidden in Chile since April 2024. The Global Peatlands Initiative is an effort made by leading experts and institutions formed in 2016 by 13 founding members at the UNFCCC COP in Marrakech, Morocco. The mission of the Initiative is to protect and conserve peatlands as the world's largest terrestrial organic carbon stock and to prevent it from being emitted into the atmosphere. Precipitation In meteorology , precipitation

13020-494: Is found in Siberia, northern Canada, Alaska and Greenland. Beneath the active layer annual temperature swings of permafrost become smaller with depth. The greatest depth of permafrost occurs right before the point where geothermal heat maintains a temperature above freezing. Above that bottom limit there may be permafrost with a consistent annual temperature—"isothermal permafrost". Permafrost typically forms in any climate where

13237-543: Is found in the temperate, boreal and subarctic zones of the Northern Hemisphere. Mires are usually shallow in polar regions because of the slow rate of accumulation of dead organic matter, and often contain permafrost and palsas . Very large swathes of Canada, northern Europe and northern Russia are covered by boreal mires. In temperate zones mires are typically more scattered due to historical drainage and peat extraction, but can cover large areas. One example

SECTION 60

#1732773213120

13454-517: Is generated by radioactive decay of unstable isotopes and flows to the surface by conduction at a rate of ~47 terawatts (TW). Away from tectonic plate boundaries, this is equivalent to an average heat flow of 25–30 °C/km (124–139 °F/mi) near the surface. When the ice content of a permafrost exceeds 250 percent (ice to dry soil by mass) it is classified as massive ice. Massive ice bodies can range in composition, in every conceivable gradation from icy mud to pure ice. Massive icy beds have

13671-401: Is intermittent and often associated with baroclinic boundaries such as cold fronts , squall lines , and warm fronts. Convective precipitation mostly consist of mesoscale convective systems and they produce torrential rainfalls with thunderstorms, wind damages, and other forms of severe weather events. Orographic precipitation occurs on the windward (upwind) side of mountains and is caused by

13888-759: Is known as the Bergeron process . The fall rate of very small droplets is negligible, hence clouds do not fall out of the sky; precipitation will only occur when these coalesce into larger drops. droplets with different size will have different terminal velocity that cause droplets collision and producing larger droplets, Turbulence will enhance the collision process. As these larger water droplets descend, coalescence continues, so that drops become heavy enough to overcome air resistance and fall as rain. Raindrops have sizes ranging from 5.1 to 20 millimetres (0.20 to 0.79 in) mean diameter, above which they tend to break up. Smaller drops are called cloud droplets, and their shape

14105-613: Is known to occur in coastal mangroves as well as in areas of high altitude. Tropical mires largely form where high precipitation is combined with poor conditions for drainage. Tropical mires account for around 11% of peatlands globally (more than half of which can be found in Southeast Asia), and are most commonly found at low altitudes, although they can also be found in mountainous regions, for example in South America, Africa and Papua New Guinea . Indonesia, particularly on

14322-561: Is less than 50 percent of the landscape and typically occurs at mean annual temperatures between 0 and −2 °C (32 and 28 °F). In soil science, the sporadic permafrost zone is abbreviated SPZ and the extensive discontinuous permafrost zone DPZ . Exceptions occur in un-glaciated Siberia and Alaska where the present depth of permafrost is a relic of climatic conditions during glacial ages where winters were up to 11 °C (20 °F) colder than those of today. At mean annual soil surface temperatures below −5 °C (23 °F)

14539-404: Is lifted or otherwise forced to rise over a layer of sub-freezing air at the surface may be condensed by the low temperature into clouds and rain. This process is typically active when freezing rain occurs. A stationary front is often present near the area of freezing rain and serves as the focus for forcing moist air to rise. Provided there is necessary and sufficient atmospheric moisture content,

14756-426: Is located on a slope, flat, or in a depression and gets most of its water from the surrounding mineral soil or from groundwater ( minerotrophic ). Thus, while a bog is always acidic and nutrient-poor, a fen may be slightly acidic, neutral, or alkaline, and either nutrient-poor or nutrient-rich. All mires are initially fens when the peat starts to form, and may turn into bogs once the height of the peat layer reaches above

14973-540: Is made, various networks exist across the United States and elsewhere where rainfall measurements can be submitted through the Internet, such as CoCoRAHS or GLOBE . If a network is not available in the area where one lives, the nearest local weather office will likely be interested in the measurement. A concept used in precipitation measurement is the hydrometeor. Any particulates of liquid or solid water in

15190-467: Is no groundwater available in an area underlain with permafrost. Any substantial settlement or installation needs to make some alternative arrangement to obtain water. A common solution is placing foundations on wood piles , a technique pioneered by Soviet engineer Mikhail Kim in Norilsk. However, warming-induced change of friction on the piles can still cause movement through creep , even as

15407-518: Is not usually defined as permafrost, so on land, permafrost is generally located beneath a so-called active layer of soil which freezes and thaws depending on the season. Around 15% of the Northern Hemisphere or 11% of the global surface is underlain by permafrost, covering a total area of around 18 million km (6.9 million sq mi). This includes large areas of Alaska , Canada , Greenland , and Siberia . It

15624-533: Is oxidised by methanotrophs above the water table level. Therefore, changes in water table level influence the size of these methane production and consumption zones. Increased soil temperatures also contribute to increased seasonal methane flux. A study in Alaska found that methane may vary by as much as 300% seasonally with wetter and warmer soil conditions due to climate change. Peatlands are important for studying past climate because they are sensitive to changes in

15841-524: Is oxidised quickly and removed from the atmosphere whereas atmospheric carbon dioxide is continuously absorbed. Throughout the Holocene (the past 12,000 years), peatlands have been persistent terrestrial carbon sinks and have had a net cooling effect, sequestering 5.6 to 38 grams of carbon per square metre per year. On average, it has been estimated that today northern peatlands sequester 20 to 30 grams of carbon per square metre per year. Peatlands insulate

16058-454: Is possible that in the future, mandatory relocation would instead take place as the cheaper option. However, it would effectively tear the local Inuit away from their ancestral homelands. Right now, their average personal income is only half that of the median NWT resident, meaning that adaptation costs are already disproportionate for them. By 2022, up to 80% of buildings in some Northern Russia cities had already experienced damage. By 2050,

16275-526: Is related to the tundra. Alpine permafrost also occurred in the Drakensberg during glacial maxima above about 3,000 metres (9,840 ft). Permafrost extends to a base depth where geothermal heat from the Earth and the mean annual temperature at the surface achieve an equilibrium temperature of 0 °C (32 °F). This base depth of permafrost can vary wildly – it is less than a meter (3 ft) in

16492-519: Is spherical. As a raindrop increases in size, its shape becomes more oblate , with its largest cross-section facing the oncoming airflow. Contrary to the cartoon pictures of raindrops, their shape does not resemble a teardrop. Intensity and duration of rainfall are usually inversely related, i.e., high intensity storms are likely to be of short duration and low intensity storms can have a long duration. Rain drops associated with melting hail tend to be larger than other rain drops. The METAR code for rain

16709-584: Is stored in living plants, dead plants and peat, as well as converted to carbon dioxide and methane. Three main factors give wetlands the ability to sequester and store carbon: high biological productivity, high water table and low decomposition rates. Suitable meteorological and hydrological conditions are necessary to provide an abundant water source for the wetland. Fully water-saturated wetland soils allow anaerobic conditions to manifest, storing carbon but releasing methane. Wetlands make up about 5-8% of Earth's terrestrial land surface but contain about 20-30% of

16926-595: Is subdivided into intrusive, injection and segregational ice. The latter is the dominant type, formed after crystallizational differentiation in wet sediments , which occurs when water migrates to the freezing front under the influence of van der Waals forces . This is a slow process, which primarily occurs in silts with salinity less than 20% of seawater : silt sediments with higher salinity and clay sediments instead have water movement prior to ice formation dominated by rheological processes. Consequently, it takes between 1 and 1000 years to form intrasedimental ice in

17143-433: Is the ongoing "greening" of the Arctic. As climate change warms the air and the soil, the region becomes more hospitable to plants, including larger shrubs and trees which could not survive there before. Thus, the Arctic is losing more and more of its tundra biomes, yet it gains more plants, which proceed to absorb more carbon. Some of the emissions caused by permafrost thaw will be offset by this increased plant growth, but

17360-489: Is the temperature to which a parcel of air must be cooled in order to become saturated, and (unless super-saturation occurs) condenses to water. Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. The cloud condensation nuclei concentration will determine the cloud microphysics. An elevated portion of a frontal zone forces broad areas of lift, which form cloud decks such as altostratus or cirrostratus . Stratus

17577-457: Is the time of year, covering one or more months, when most of the average annual rainfall in a region falls. The term green season is also sometimes used as a euphemism by tourist authorities. Areas with wet seasons are dispersed across portions of the tropics and subtropics. Savanna climates and areas with monsoon regimes have wet summers and dry winters. Tropical rainforests technically do not have dry or wet seasons, since their rainfall

17794-449: Is therefore vulnerable to changes in hydrology or vegetation cover. These peatlands are mostly located in developing regions with impoverished and rapidly growing populations. These lands have become targets for commercial logging , paper pulp production and conversion to plantations through clear-cutting , drainage and burning. Drainage of tropical peatlands alters the hydrology and increases their susceptibility to fire and soil erosion, as

18011-534: Is unknown. Notable sites with known ancient ice deposits include Yenisei River valley in Siberia , Russia as well as Banks and Bylot Island in Canada's Nunavut and Northwest Territories . Some of the buried ice sheet remnants are known to host thermokarst lakes . Intrasedimental or constitutional ice has been widely observed and studied across Canada. It forms when subterranean waters freeze in place, and

18228-582: Is widely practiced in Northern European countries, such as Russia, Sweden, Finland, Ireland and the Baltic states . Tropical peatlands comprise 0.25% of Earth's terrestrial land surface but store 3% of all soil and forest carbon stocks. The use of this land by humans, including draining and harvesting of tropical peat forests, results in the emission of large amounts of carbon dioxide into the atmosphere. In addition, fires occurring on peatland dried by

18445-678: The Great Basin and Mojave Deserts . Similarly, in Asia, the Himalaya mountains create an obstacle to monsoons which leads to extremely high precipitation on the southern side and lower precipitation levels on the northern side. Extratropical cyclones can bring cold and dangerous conditions with heavy rain and snow with winds exceeding 119 km/h (74 mph), (sometimes referred to as windstorms in Europe). The band of precipitation that

18662-477: The Köppen climate classification system use average annual rainfall to help differentiate between differing climate regimes. Global warming is already causing changes to weather, increasing precipitation in some geographies, and reducing it in others, resulting in additional extreme weather . Precipitation may occur on other celestial bodies. Saturn's largest satellite , Titan , hosts methane precipitation as

18879-467: The Mongolian Plateau are the only areas where the average active layer is deeper than 600 centimetres (20 ft), with the record of 10 metres (33 ft). The border between active layer and permafrost itself is sometimes called permafrost table. Around 15% of Northern Hemisphere land that is not completely covered by ice is directly underlain by permafrost; 22% is defined as part of

19096-719: The Northern and Southern Hemisphere are cold enough to support perennially frozen ground: some of the best-known examples include the Canadian Rockies , the European Alps , Himalaya and the Tien Shan . In general, it has been found that extensive alpine permafrost requires mean annual air temperature of −3 °C (27 °F), though this can vary depending on local topography , and some mountain areas are known to support permafrost at −1 °C (30 °F). It

19313-466: The Pleistocene . Base depth is affected by the underlying geology, and particularly by thermal conductivity , which is lower for permafrost in soil than in bedrock . Lower conductivity leaves permafrost less affected by the geothermal gradient , which is the rate of increasing temperature with respect to increasing depth in the Earth's interior. It occurs as the Earth's internal thermal energy

19530-454: The continental shelves of the polar regions. These areas formed during the last Ice Age , when a larger portion of Earth's water was bound up in ice sheets on land and when sea levels were low. As the ice sheets melted to again become seawater during the Holocene glacial retreat , coastal permafrost became submerged shelves under relatively warm and salty boundary conditions, compared to surface permafrost. Since then, these conditions led to

19747-459: The electromagnetic spectrum that theory and practice show are related to the occurrence and intensity of precipitation. The sensors are almost exclusively passive, recording what they see, similar to a camera, in contrast to active sensors ( radar , lidar ) that send out a signal and detect its impact on the area being observed. Satellite sensors now in practical use for precipitation fall into two categories. Thermal infrared (IR) sensors record

19964-403: The equator ). In 2014, a collection of regional estimates of alpine permafrost extent had established a global extent of 3,560,000 km (1,370,000 sq mi). Yet, by 2014, alpine permafrost in the Andes has not been fully mapped, although its extent has been modeled to assess the amount of water bound up in these areas. Subsea permafrost occurs beneath the seabed and exists in

20181-446: The eyewall , and in comma-head precipitation patterns around mid-latitude cyclones . A wide variety of weather can be found along an occluded front, with thunderstorms possible, but usually their passage is associated with a drying of the air mass. Occluded fronts usually form around mature low-pressure areas. Precipitation may occur on celestial bodies other than Earth. When it gets cold, Mars has precipitation that most likely takes

20398-408: The ice sheet at about the latitude of New Jersey through southern Iowa and northern Missouri , but permafrost was more extensive in the drier western regions where it extended to the southern border of Idaho and Oregon . In the Southern Hemisphere , there is some evidence for former permafrost from this period in central Otago and Argentine Patagonia , but was probably discontinuous, and

20615-563: The permafrost in subarctic regions, thus delaying thawing during summer, as well as inducing the formation of permafrost. As the global climate continues to warm, wetlands could become major carbon sources as higher temperatures cause higher carbon dioxide emissions. Compared with untilled cropland, wetlands can sequester around two times the carbon. Carbon sequestration can occur in constructed wetlands as well as natural ones. Estimates of greenhouse gas fluxes from wetlands indicate that natural wetlands have lower fluxes, but man-made wetlands have

20832-586: The pressure melting point throughout, may have liquid water at the interface with the ground and are therefore free of underlying permafrost. "Fossil" cold anomalies in the geothermal gradient in areas where deep permafrost developed during the Pleistocene persist down to several hundred metres. This is evident from temperature measurements in boreholes in North America and Europe. The below-ground temperature varies less from season to season than

21049-425: The return period or frequency. The intensity of a storm can be predicted for any return period and storm duration, from charts based on historical data for the location. The term 1 in 10 year storm describes a rainfall event which is rare and is only likely to occur once every 10 years, so it has a 10 percent likelihood any given year. The rainfall will be greater and the flooding will be worse than

21266-539: The southern hemisphere , most of the equivalent line would fall within the Southern Ocean if there were land there. Most of the Antarctic continent is overlain by glaciers, under which much of the terrain is subject to basal melting . The exposed land of Antarctica is substantially underlain with permafrost, some of which is subject to warming and thawing along the coastline. A range of elevations in both

21483-458: The "appropriate" way to inject waste beneath the permafrost. This means that as of 2023, there are ~4500 industrial facilities in the Arctic permafrost areas which either actively process or store hazardous chemicals. Additionally, there are between 13,000 and 20,000 sites which have been heavily contaminated, 70% of them in Russia, and their pollution is currently trapped in the permafrost. About

21700-415: The 1990s. Between 2000 and 2018, the average active layer thickness had increased from ~127 centimetres (4.17 ft) to ~145 centimetres (4.76 ft), at an average annual rate of ~0.65 centimetres (0.26 in). In Yukon , the zone of continuous permafrost might have moved 100 kilometres (62 mi) poleward since 1899, but accurate records only go back 30 years. The extent of subsea permafrost

21917-631: The Central Congo Basin , covering 145,500 km and storing up to 10 kg of carbon. The total area of mires has declined globally due to drainage for agriculture, forestry and peat harvesting. For example, more than 50% of the original European mire area which is more than 300,000 km has been lost. Some of the largest losses have been in Russia, Finland, the Netherlands, the United Kingdom, Poland and Belarus. A catalog of

22134-610: The Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in). Mechanisms of producing precipitation include convective, stratiform , and orographic rainfall. Convective processes involve strong vertical motions that can cause the overturning of the atmosphere in that location within an hour and cause heavy precipitation, while stratiform processes involve weaker upward motions and less intense precipitation. Precipitation can be divided into three categories, based on whether it falls as liquid water, liquid water that freezes on contact with

22351-535: The IR data. The second category of sensor channels is in the microwave part of the electromagnetic spectrum. The frequencies in use range from about 10 gigahertz to a few hundred GHz. Channels up to about 37 GHz primarily provide information on the liquid hydrometeors (rain and drizzle) in the lower parts of clouds, with larger amounts of liquid emitting higher amounts of microwave radiant energy . Channels above 37 GHz display emission signals, but are dominated by

22568-736: The Northern Hemisphere, poleward is towards the North Pole, or north. Within the Southern Hemisphere, poleward is towards the South Pole, or south. Southwest of extratropical cyclones, curved cyclonic flow bringing cold air across the relatively warm water bodies can lead to narrow lake-effect snow bands. Those bands bring strong localized snowfall which can be understood as follows: Large water bodies such as lakes efficiently store heat that results in significant temperature differences (larger than 13 °C or 23 °F) between

22785-632: The Northern Hemisphere. Peatlands are estimated to cover around 3% of the globe's surface, although estimating the extent of their cover worldwide is difficult due to the varying accuracy and methodologies of land surveys from many countries. Mires occur wherever conditions are right for peat accumulation: largely where organic matter is constantly waterlogged. Hence the distribution of mires is dependent on topography , climate, parent material, biota and time. The type of mire—bog, fen, marsh or swamp—depends also on each of these factors. The largest accumulation of mires constitutes around 64% of global peatlands and

23002-440: The United States, while under the scenario of high global warming and worst-case permafrost feedback response, they would approach year 2019 emissions of China. Fewer studies have attempted to describe the impact directly in terms of warming. A 2018 paper estimated that if global warming was limited to 2 °C (3.6 °F), gradual permafrost thaw would add around 0.09 °C (0.16 °F) to global temperatures by 2100, while

23219-1000: The action of solid hydrometeors (snow, graupel, etc.) to scatter microwave radiant energy. Satellites such as the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission employ microwave sensors to form precipitation estimates. Additional sensor channels and products have been demonstrated to provide additional useful information including visible channels, additional IR channels, water vapor channels and atmospheric sounding retrievals. However, most precipitation data sets in current use do not employ these data sources. The IR estimates have rather low skill at short time and space scales, but are available very frequently (15 minutes or more often) from satellites in geosynchronous Earth orbit. IR works best in cases of deep, vigorous convection—such as

23436-412: The active layer subject to permafrost thaw, this exposes formerly stored carbon to biogenic processes which facilitate its entrance into the atmosphere as carbon dioxide and methane . Because carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw, it is a well-known example of a positive climate change feedback . Permafrost thaw is sometimes included as one of

23653-443: The air temperature, with mean annual temperatures tending to increase with depth due to the geothermal crustal gradient. Thus, if the mean annual air temperature is only slightly below 0 °C (32 °F), permafrost will form only in spots that are sheltered (usually with a northern or southern aspect , in the north and south hemispheres respectively) creating discontinuous permafrost. Usually, permafrost will remain discontinuous in

23870-474: The air. These fires add to greenhouse gas emissions while also causing thousands of deaths every year. Decreased biodiversity due to deforestation and drainage makes these ecosystem more vulnerable and less resilient to change. Homogenous ecosystems are at an increased risk to extreme climate conditions and are less likely to recover from fires. Some peatlands are being dried out by climate change . Drainage of peatlands due to climatic factors may also increase

24087-574: The annual permafrost emissions are likely comparable with global emissions from deforestation , or to annual emissions of large countries such as Russia , the United States or China . Apart from its climate impact, permafrost thaw brings more risks. Formerly frozen ground often contains enough ice that when it thaws, hydraulic saturation is suddenly exceeded, so the ground shifts substantially and may even collapse outright. Many buildings and other infrastructure were built on permafrost when it

24304-429: The areas where it is shallowest, yet reaches 1,493 m (4,898 ft) in the northern Lena and Yana River basins in Siberia . Calculations indicate that the formation time of permafrost greatly slows past the first several metres. For instance, over half a million years was required to form the deep permafrost underlying Prudhoe Bay, Alaska , a time period extending over several glacial and interglacial cycles of

24521-497: The atmosphere are known as hydrometeors. Formations due to condensation, such as clouds, haze , fog, and mist, are composed of hydrometeors. All precipitation types are made up of hydrometeors by definition, including virga , which is precipitation which evaporates before reaching the ground. Particles blown from the Earth's surface by wind, such as blowing snow and blowing sea spray, are also hydrometeors , as are hail and snow . Although surface precipitation gauges are considered

24738-511: The atmosphere as methane, those emissions will cause 40-70% of the total warming caused by permafrost thaw during the 21st century. Much of the uncertainty about the eventual extent of permafrost methane emissions is caused by the difficulty of accounting for the recently discovered abrupt thaw processes, which often increase the fraction of methane emitted over carbon dioxide in comparison to the usual gradual thaw processes. Another factor which complicates projections of permafrost carbon emissions

24955-413: The atmosphere due to their mass, and may collide and stick together in clusters, or aggregates. These aggregates are snowflakes, and are usually the type of ice particle that falls to the ground. Guinness World Records list the world's largest snowflakes as those of January 1887 at Fort Keogh , Montana; allegedly one measured 38 cm (15 in) wide. The exact details of the sticking mechanism remain

25172-451: The atmosphere primarily through the exchange of carbon dioxide , methane and nitrous oxide , and can be damaged by excess nitrogen from agriculture or rainwater. The sequestration of carbon dioxide takes place at the surface via the process of photosynthesis , while losses of carbon dioxide occur through living plants via autotrophic respiration and from the litter and peat via heterotrophic respiration. In their natural state, mires are

25389-554: The atmosphere, as well as the transfer of carbon between land and water as methane, dissolved organic carbon , dissolved inorganic carbon , particulate inorganic carbon and particulate organic carbon . Most of the bacteria and fungi found in permafrost cannot be cultured in the laboratory, but the identity of the microorganisms can be revealed by DNA -based techniques. For instance, analysis of 16S rRNA genes from late Pleistocene permafrost samples in eastern Siberia 's Kolyma Lowland revealed eight phylotypes , which belonged to

25606-458: The atmosphere. Accumulation rates of carbon during the last millennium were close to 40 g C/m/yr. Northern peatlands are associated with boreal and subarctic climates. Northern peatlands were mostly built up during the Holocene after the retreat of Pleistocene glaciers, but in contrast tropical peatlands are much older. Total northern peat carbon stocks are estimated to be 1055 Gt of carbon. Of all northern circumpolar countries, Russia has

25823-443: The availability of oxygen to the aerobic microbes thus accelerating peat decomposition. Levels of methane emissions also vary with the water table position and temperature. A water table near the peat surface gives the opportunity for anaerobic microorganisms to flourish. Methanogens are strictly anaerobic organisms and produce methane from organic matter in anoxic conditions below the water table level, while some of that methane

26040-484: The average time between observations exceeds three hours. This several-hour interval is insufficient to adequately document precipitation because of the transient nature of most precipitation systems as well as the inability of a single satellite to appropriately capture the typical daily cycle of precipitation at a given location. Since the late 1990s, several algorithms have been developed to combine precipitation data from multiple satellites' sensors, seeking to emphasize

26257-531: The best analyses of gauge data take two months or more after the observation time to undergo the necessary transmission, assembly, processing and quality control. Thus, precipitation estimates that include gauge data tend to be produced further after the observation time than the no-gauge estimates. As a result, while estimates that include gauge data may provide a more accurate depiction of the "true" precipitation, they are generally not suited for real- or near-real-time applications. The work described has resulted in

26474-420: The best instantaneous satellite estimate. In either case, the less-emphasized goal is also considered desirable. One key aspect of multi-satellite studies is the ability to include even a small amount of surface gauge data, which can be very useful for controlling the biases that are endemic to satellite estimates. The difficulties in using gauge data are that 1) their availability is limited, as noted above, and 2)

26691-502: The carbon stored in all other vegetation types, including forests. This substantial carbon storage represents about 30% of the world's soil carbon , underscoring their critical importance in the global carbon cycle . In their natural state, peatlands provide a range of ecosystem services , including minimising flood risk and erosion, purifying water and regulating climate. Peatlands are under threat by commercial peat harvesting, drainage and conversion for agriculture (notably palm oil in

26908-409: The chance to fully decompose and release their carbon , making tundra soil a carbon sink . As global warming heats the ecosystem, frozen soil thaws and becomes warm enough for decomposition to start anew, accelerating the permafrost carbon cycle . Depending on conditions at the time of thaw, decomposition can release either carbon dioxide or methane , and these greenhouse gas emissions act as

27125-532: The changing temperature and humidity within the atmosphere through which they fall on their way to the ground. The METAR code for snow is SN, while snow showers are coded SHSN. Diamond dust, also known as ice needles or ice crystals, forms at temperatures approaching −40 °C (−40 °F) due to air with slightly higher moisture from aloft mixing with colder, surface-based air. They are made of simple ice crystals, hexagonal in shape. The METAR identifier for diamond dust within international hourly weather reports

27342-421: The coast of Tuktoyaktuk in western Arctic Canada , where the remains of Laurentide Ice Sheet are located. Buried surface ice may derive from snow, frozen lake or sea ice , aufeis (stranded river ice) and even buried glacial ice from the former Pleistocene ice sheets. The latter hold enormous value for paleoglaciological research, yet even as of 2022, the total extent and volume of such buried ancient ice

27559-462: The coding of GS, which is short for the French word grésil. Stones just larger than golf ball-sized are one of the most frequently reported hail sizes. Hailstones can grow to 15 centimetres (6 in) and weigh more than 500 grams (1 lb). In large hailstones, latent heat released by further freezing may melt the outer shell of the hailstone. The hailstone then may undergo 'wet growth', where

27776-405: The conversion of organics to carbon dioxide to be released in the atmosphere. Records of past human behaviour and environments can be contained within peatlands. These may take the form of human artefacts, or palaeoecological and geochemical records. Peatlands are used by humans in modern times for a range of purposes, the most dominant being agriculture and forestry, which accounts for around

27993-704: The damage to buildings ($ 2.8 billion), but there's also damage to roads ($ 700 million), railroads ($ 620 million), airports ($ 360 million) and pipelines ($ 170 million). Similar estimates were done for RCP4.5, a less intense scenario which leads to around 2.5 °C (4.5 °F) by 2100, a level of warming similar to the current projections. In that case, total damages from permafrost thaw are reduced to $ 3 billion, while damages to roads and railroads are lessened by approximately two-thirds (from $ 700 and $ 620 million to $ 190 and $ 220 million) and damages to pipelines are reduced more than ten-fold, from $ 170 million to $ 16 million. Unlike

28210-486: The damage to residential infrastructure may reach $ 15 billion, while total public infrastructure damages could amount to 132 billion. This includes oil and gas extraction facilities, of which 45% are believed to be at risk. Outside of the Arctic, Qinghai–Tibet Plateau (sometimes known as "the Third Pole"), also has an extensive permafrost area. It is warming at twice the global average rate, and 40% of it

28427-424: The deeper the clouds get, and the greater the precipitation rate becomes. In mountainous areas, heavy snowfall accumulates when air is forced to ascend the mountains and squeeze out precipitation along their windward slopes, which in cold conditions, falls in the form of snow. Because of the ruggedness of terrain, forecasting the location of heavy snowfall remains a significant challenge. The wet, or rainy, season

28644-531: The descending and generally warming, leeward side where a rain shadow is observed. In Hawaii , Mount Waiʻaleʻale , on the island of Kauai, is notable for its extreme rainfall, as it has the second-highest average annual rainfall on Earth, with 12,000 millimetres (460 in). Storm systems affect the state with heavy rains between October and March. Local climates vary considerably on each island due to their topography, divisible into windward ( Koʻolau ) and leeward ( Kona ) regions based upon location relative to

28861-605: The discontinuous zone. Observed warming was up to 3 °C (5.4 °F) in parts of Northern Alaska (early 1980s to mid-2000s) and up to 2 °C (3.6 °F) in parts of the Russian European North (1970–2020). This warming inevitably causes permafrost to thaw: active layer thickness has increased in the European and Russian Arctic across the 21st century and at high elevation areas in Europe and Asia since

29078-483: The draining of peat bogs release even more carbon dioxide. The economic value of a tropical peatland was once derived from raw materials, such as wood, bark, resin and latex, the extraction of which did not contribute to large carbon emissions. In Southeast Asia, peatlands are drained and cleared for human use for a variety of reasons, including the production of palm oil and timber for export in primarily developing nations. This releases stored carbon dioxide and preventing

29295-403: The ecosystem can undergo a state shift, turning the mire into a barren land with lower biodiversity and richness. The formation of humic acid occurs during the biogeochemical degradation of vegetation debris, animal residue and degraded segments. The loads of organic matter in the form of humic acid is a source of precursors of coal. Prematurely exposing the organic matter to the atmosphere promotes

29512-426: The emission of methane, which is a strong greenhouse gas. However, given the short "lifetime" of methane (12 years), it is often said that methane emissions are unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks. Hence, peatlands do result in cooling of the Earth's climate over a longer time period as methane

29729-416: The end of summer: as of 2018, the average thickness in the Northern Hemisphere is ~145 centimetres (4.76 ft), but there are significant regional differences. Northeastern Siberia , Alaska and Greenland have the most solid permafrost with the lowest extent of active layer (less than 50 centimetres (1.6 ft) on average, and sometimes only 30 centimetres (0.98 ft)), while southern Norway and

29946-626: The environment and can reveal levels of isotopes , pollutants, macrofossils , metals from the atmosphere and pollen. For example, carbon-14 dating can reveal the age of the peat. The dredging and destruction of a peatland will release the carbon dioxide that could reveal irreplaceable information about the past climatic conditions. Many kinds of microorganisms inhabit peatlands, due to the regular supply of water and abundance of peat forming vegetation. These microorganisms include but are not limited to methanogens , algae, bacteria, zoobenthos , of which Sphagnum species are most abundant. Peat contains

30163-459: The environment as the warming progresses. Lastly, concerns have been raised about the potential for pathogenic microorganisms surviving the thaw and contributing to future pandemics . However, this is considered unlikely, and a scientific review on the subject describes the risks as "generally low". Permafrost is soil , rock or sediment that is frozen for more than two consecutive years. In practice, this means that permafrost occurs at

30380-548: The equator in Colombia are amongst the wettest places on Earth. North and south of this are regions of descending air that form subtropical ridges where precipitation is low; the land surface underneath these ridges is usually arid, and these regions make up most of the Earth's deserts. An exception to this rule is in Hawaii, where upslope flow due to the trade winds lead to one of the wettest locations on Earth. Otherwise,

30597-431: The exact proportion is uncertain. It is considered very unlikely that this greening could offset all of the emissions from permafrost thaw during the 21st century, and even less likely that it could continue to keep pace with those emissions after the 21st century. Further, climate change also increases the risk of wildfires in the Arctic, which can substantially accelerate emissions of permafrost carbon. Altogether, it

30814-458: The first harvest, which occurs late in the wet season. Tropical cyclones, a source of very heavy rainfall, consist of large air masses several hundred miles across with low pressure at the centre and with winds blowing inward towards the centre in either a clockwise direction (southern hemisphere) or counterclockwise (northern hemisphere). Although cyclones can take an enormous toll in lives and personal property, they may be important factors in

31031-674: The flow of the Westerlies into the Rocky Mountains lead to the wettest, and at elevation snowiest, locations within North America. In Asia during the wet season, the flow of moist air into the Himalayas leads to some of the greatest rainfall amounts measured on Earth in northeast India. The standard way of measuring rainfall or snowfall is the standard rain gauge, which can be found in 10 cm (3.9 in) plastic and 20 cm (7.9 in) metal varieties. The inner cylinder

31248-579: The form of ice needles, rather than rain or snow. Convective rain , or showery precipitation, occurs from convective clouds, e.g. cumulonimbus or cumulus congestus . It falls as showers with rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited horizontal extent. Most precipitation in the tropics appears to be convective; however, it has been suggested that stratiform precipitation also occurs. Graupel and hail indicate convection. In mid-latitudes, convective precipitation

31465-473: The formation of frozen debris lobes (FDLs), which are defined as "slow-moving landslides composed of soil, rocks, trees, and ice". This is a notable issue in the Alaska 's southern Brooks Range , where some FDLs measured over 100 m (110 yd) in width, 20 m (22 yd) in height, and 1,000 m (1,100 yd) in length by 2012. As of December 2021, there were 43 frozen debris lobes identified in

31682-400: The funnel needs to be removed before the event begins. For those looking to measure rainfall the most inexpensively, a can that is cylindrical with straight sides will act as a rain gauge if left out in the open, but its accuracy will depend on what ruler is used to measure the rain with. Any of the above rain gauges can be made at home, with enough know-how . When a precipitation measurement

31899-425: The gauge. Once the snowfall/ice is finished accumulating, or as 30 cm (12 in) is approached, one can either bring it inside to melt, or use lukewarm water to fill the inner cylinder with in order to melt the frozen precipitation in the outer cylinder, keeping track of the warm fluid added, which is subsequently subtracted from the overall total once all the ice/snow is melted. Other types of gauges include

32116-425: The gradual and ongoing decline of subsea permafrost extent. Nevertheless, its presence remains an important consideration for the "design, construction, and operation of coastal facilities, structures founded on the seabed, artificial islands , sub-sea pipelines , and wells drilled for exploration and production". Subsea permafrost can also overlay deposits of methane clathrate , which were once speculated to be

32333-433: The ground surface above the original topography. Mires can reach considerable heights above the underlying mineral soil or bedrock : peat depths of above 10 m have been commonly recorded in temperate regions (many temperate and most boreal mires were removed by ice sheets in the last Ice Age), and above 25 m in tropical regions. When the absolute decay rate of peat in the catotelm (the lower, water-saturated zone of

32550-463: The hailstones to the upper part of the cloud. The updraft dissipates and the hailstones fall down, back into the updraft, and are lifted again. Hail has a diameter of 5 millimetres (0.20 in) or more. Within METAR code, GR is used to indicate larger hail, of a diameter of at least 6.4 millimetres (0.25 in). GR is derived from the French word grêle. Smaller-sized hail, as well as snow pellets, use

32767-487: The higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover. In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desertlike climate just downwind across western Argentina. The Sierra Nevada range creates the same effect in North America forming

32984-479: The ice crystals the crystals are able to grow to hundreds of micrometers in size at the expense of the water droplets. This process is known as the Wegener–Bergeron–Findeisen process . The corresponding depletion of water vapor causes the droplets to evaporate, meaning that the ice crystals grow at the droplets' expense. These large crystals are an efficient source of precipitation, since they fall through

33201-491: The inflow of groundwater (bringing in supplementary cations) is high. Generally, whenever the inputs of carbon into the soil from dead organic matter exceed the carbon outputs via organic matter decomposition , peat is formed. This occurs due to the anoxic state of water-logged peat, which slows down decomposition. Peat-forming vegetation is typically also recalcitrant (poorly decomposing) due to high lignin and low nutrient content. Topographically , accumulating peat elevates

33418-411: The influence of aspect can never be sufficient to thaw permafrost and a zone of continuous permafrost (abbreviated to CPZ ) forms. A line of continuous permafrost in the Northern Hemisphere represents the most southern border where land is covered by continuous permafrost or glacial ice. The line of continuous permafrost varies around the world northward or southward due to regional climatic changes. In

33635-399: The islands of Sumatra, Kalimantan and Papua, has one of the largest peatlands in the world, with an area of about 24 million hectares. These peatlands play an important role in global carbon storage and have very high biodiversity. However, peatlands in Indonesia also face major threats from deforestation and forest fires. In the early 21st century, the world's largest tropical mire was found in

33852-444: The land selected for plantations are typically substantial carbon stores that promote biodiverse ecosystems. Palm oil plantations have replaced much of the forested peatlands in Southeast Asia. Estimates now state that 12.9 Mha or about 47% of peatlands in Southeast Asia were deforested by 2006. In their natural state, peatlands are waterlogged with high water tables making for an inefficient soil. To create viable soil for plantation,

34069-747: The largest area of peatlands, and contains the largest peatland in the world, The Great Vasyugan Mire . Nakaikemi Wetland in southwest Honshu, Japan is more than 50,000 years old and has a depth of 45 m. The Philippi Peatland in Greece has probably one of the deepest peat layers with a depth of 190 m. According to the IPCC Sixth Assessment Report , the conservation and restoration of wetlands and peatlands has large economic potential to mitigate greenhouse gas emissions, providing benefits for adaptation, mitigation and biodiversity. Wetlands provide an environment where organic carbon

34286-416: The leeward side of mountains, desert climates can exist due to the dry air caused by compressional heating. Most precipitation occurs within the tropics and is caused by convection . The movement of the monsoon trough , or Intertropical Convergence Zone , brings rainy seasons to savannah regions. Precipitation is a major component of the water cycle , and is responsible for depositing fresh water on

34503-454: The liquid outer shell collects other smaller hailstones. The hailstone gains an ice layer and grows increasingly larger with each ascent. Once a hailstone becomes too heavy to be supported by the storm's updraft, it falls from the cloud. Snow crystals form when tiny supercooled cloud droplets (about 10 μm in diameter) freeze. Once a droplet has frozen, it grows in the supersaturated environment. Because water droplets are more numerous than

34720-574: The littoral zones and deltas of salty water, followed inland by swamp forests . These forests occur on the margin of peatlands with a palm rich flora with trees 70 m tall and 8 m in girth accompanied by ferns and epiphytes. The third, padang , from the Malay and Indonesian word for forest, consists of shrubs and tall thin trees and appear in the center of large peatlands. The diversity of woody species, like trees and shrubs, are far greater in tropical peatlands than in peatlands of other types. Peat in

34937-502: The major tipping points in the climate system due to the exhibition of local thresholds and its effective irreversibility. However, while there are self-perpetuating processes that apply on the local or regional scale, it is debated as to whether it meets the strict definition of a global tipping point as in aggregate permafrost thaw is gradual with warming. In the northern circumpolar region, permafrost contains organic matter equivalent to 1400–1650 billion tons of pure carbon, which

35154-594: The mean annual air temperature is lower than the freezing point of water. Exceptions are found in humid boreal forests , such as in Northern Scandinavia and the North-Eastern part of European Russia west of the Urals , where snow acts as an insulating blanket. Glaciated areas may also be exceptions. Since all glaciers are warmed at their base by geothermal heat, temperate glaciers , which are near

35371-469: The mires in tropical regions of Indonesia and Malaysia are drained and cleared. The peatland forests harvested for palm oil production serve as above- and below-ground carbon stores, containing at least 42,069 million metric tonnes (Mt) of soil carbon. Exploitation of this land raises many environmental concerns, namely increased greenhouse gas emissions , risk of fires and a decrease in biodiversity. Greenhouse gas emissions for palm oil planted on peatlands

35588-429: The moisture within the rising air will condense into clouds, namely nimbostratus and cumulonimbus if significant precipitation is involved. Eventually, the cloud droplets will grow large enough to form raindrops and descend toward the Earth where they will freeze on contact with exposed objects. Where relatively warm water bodies are present, for example due to water evaporation from lakes, lake-effect snowfall becomes

35805-403: The original theories for ice inclusion in freezing soils. While there are four categories of ice in permafrost – pore ice, ice wedges (also known as vein ice), buried surface ice and intrasedimental (sometimes also called constitutional ) ice – only the last two tend to be large enough to qualify as massive ground ice. These two types usually occur separately, but may be found together, like on

36022-476: The other costs stemming from climate change in Alaska, such as damages from increased precipitation and flooding, climate change adaptation is not a viable way to reduce damages from permafrost thaw, as it would cost more than the damage incurred under either scenario. In Canada, Northwest Territories have a population of only 45,000 people in 33 communities, yet permafrost thaw is expected to cost them $ 1.3 billion over 75 years, or around $ 51 million

36239-401: The other hand, is linked to poverty and is so widespread that it also has negatively impacts these peatlands. The biotic and abiotic factors controlling Southeast Asian peatlands are interdependent. Its soil, hydrology and morphology are created by the present vegetation through the accumulation of its own organic matter, building a favorable environment for this specific vegetation. This system

36456-514: The other hands, disturbance of formerly hard soil increases drainage of water reservoirs in northern wetlands . This can dry them out and compromise the survival of plants and animals used to the wetland ecosystem. In high mountains, much of the structural stability can be attributed to glaciers and permafrost. As climate warms, permafrost thaws, decreasing slope stability and increasing stress through buildup of pore-water pressure, which may ultimately lead to slope failure and rockfalls . Over

36673-697: The past century, an increasing number of alpine rock slope failure events in mountain ranges around the world have been recorded, and some have been attributed to permafrost thaw induced by climate change. The 1987 Val Pola landslide that killed 22 people in the Italian Alps is considered one such example. In 2002, massive rock and ice falls (up to 11.8 million m ), earthquakes (up to 3.9 Richter ), floods (up to 7.8 million m water), and rapid rock-ice flow to long distances (up to 7.5 km at 60 m/s) were attributed to slope instability in high mountain permafrost. Permafrost thaw can also result in

36890-403: The peat layer) matches the rate of input of new peat into the catotelm, the mire will stop growing in height. Despite accounting for just 3% of Earth's land surfaces, peatlands are collectively a major carbon store containing between 500 and 700 billion tonnes of carbon. Carbon stored within peatlands equates to over half the amount of carbon found in the atmosphere . Peatlands interact with

37107-590: The peat research collection at the University of Minnesota Duluth provides references to research on worldwide peat and peatlands. Peatlands have unusual chemistry that influences, among other things, their biota and water outflow. Peat has very high cation-exchange capacity due to its high organic matter content: cations such as Ca are preferentially adsorbed onto the peat in exchange for H ions. Water passing through peat declines in nutrients and pH . Therefore, mires are typically nutrient-poor and acidic unless

37324-450: The peatland, and allowing natural vegetation to recover. Rehabilitation projects undertaken in North America and Europe usually focus on the rewetting of peatlands and revegetation of native species. This acts to mitigate carbon release in the short term before the new growth of vegetation provides a new source of organic litter to fuel the peat formation in the long term. UNEP is supporting peatland restoration in Indonesia. Peat extraction

37541-435: The peatlands and the atmosphere has been of current concern globally in the field of ecology and biogeochemical studies. The drainage of peatlands for agriculture and forestry has resulted in the emission of extensive greenhouse gases into the atmosphere, most notably carbon dioxide and methane. By allowing oxygen to enter the peat column within a mire, drainage disrupts the balance between peat accumulation and decomposition, and

37758-491: The phyla Actinomycetota and Pseudomonadota . "Muot-da-Barba-Peider", an alpine permafrost site in eastern Switzerland, was found to host a diverse microbial community in 2016. Prominent bacteria groups included phylum Acidobacteriota , Actinomycetota , AD3, Bacteroidota , Chloroflexota , Gemmatimonadota , OD1, Nitrospirota , Planctomycetota , Pseudomonadota , and Verrucomicrobiota , in addition to eukaryotic fungi like Ascomycota , Basidiomycota , and Zygomycota . In

37975-524: The pipeline from sinking and the Qingzang railway in Tibet employs a variety of methods to keep the ground cool, both in areas with frost-susceptible soil . Permafrost may necessitate special enclosures for buried utilities, called " utilidors ". Globally, permafrost warmed by about 0.3 °C (0.54 °F) between 2007 and 2016, with stronger warming observed in the continuous permafrost zone relative to

38192-411: The planet's 2500 Gt soil carbon stores. Peatlands contain the highest amounts of soil organic carbon of all wetland types. Wetlands can become sources of carbon, rather than sinks, as the decomposition occurring within the ecosystem emits methane. Natural peatlands do not always have a measurable cooling effect on the climate in a short time span as the cooling effects of sequestering carbon are offset by

38409-462: The planet. Approximately 505,000 cubic kilometres (121,000 cu mi) of water falls as precipitation each year: 398,000 cubic kilometres (95,000 cu mi) over oceans and 107,000 cubic kilometres (26,000 cu mi) over land. Given the Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in), but over land it is only 715 millimetres (28.1 in). Climate classification systems such as

38626-424: The popular wedge gauge (the cheapest rain gauge and most fragile), the tipping bucket rain gauge , and the weighing rain gauge . The wedge and tipping bucket gauges have problems with snow. Attempts to compensate for snow/ice by warming the tipping bucket meet with limited success, since snow may sublimate if the gauge is kept much above freezing. Weighing gauges with antifreeze should do fine with snow, but again,

38843-490: The precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions. Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage. On the large scale, the highest precipitation amounts outside topography fall in the tropics, closely tied to the Intertropical Convergence Zone , itself the ascending branch of the Hadley cell . Mountainous locales near

39060-407: The presence of other tall and dense vegetation like papyrus . Like fens, swamps are typically of higher pH level and nutrient availability than bogs. Some bogs and fens can support limited shrub or tree growth on hummocks . A marsh is a type of wetland within which vegetation is rooted in mineral soil. Peatlands are found around the globe, although are at their greatest extent at high latitudes in

39277-595: The presence of permafrost. Black spruce tolerates limited rooting zones, and dominates flora where permafrost is extensive. Likewise, animal species which live in dens and burrows have their habitat constrained by the permafrost, and these constraints also have a secondary impact on interactions between species within the ecosystem . While permafrost soil is frozen, it is not completely inhospitable to microorganisms , though their numbers can vary widely, typically from 1 to 1000 million per gram of soil. The permafrost carbon cycle (Arctic Carbon Cycle) deals with

39494-549: The presently living species, scientists observed a variety of adaptations for sub-zero conditions, including reduced and anaerobic metabolic processes. There are only two large cities in the world built in areas of continuous permafrost (where the frozen soil forms an unbroken, below-zero sheet) and both are in Russia – Norilsk in Krasnoyarsk Krai and Yakutsk in the Sakha Republic . Building on permafrost

39711-581: The primary types are A, tropical; B, dry; C, mild mid-latitude; D, cold mid-latitude; and E, polar. The five primary classifications can be further divided into secondary classifications such as rain forest , monsoon , tropical savanna , humid subtropical , humid continental , oceanic climate , Mediterranean climate , steppe , subarctic climate , tundra , polar ice cap , and desert . Rain forests are characterized by high rainfall, with definitions setting minimum normal annual rainfall between 1,750 and 2,000 mm (69 and 79 in). A tropical savanna

39928-460: The project was abandoned in 1999. Similar projects in China have led to immense loss of tropical marshes and fens due to rice production. Drainage, which also increases the risk of burning, can cause additional emissions of CO 2 by 30–100 t/ha/year if the water table is lowered by only 1 m. The draining of peatlands is likely the most important and long-lasting threat to peatlands globally, but

40145-406: The remaining rainfall in the outer cylinder until all the fluid in the outer cylinder is gone, adding to the overall total until the outer cylinder is empty. These gauges are used in the winter by removing the funnel and inner cylinder and allowing snow and freezing rain to collect inside the outer cylinder. Some add anti-freeze to their gauge so they do not have to melt the snow or ice that falls into

40362-413: The result at the surface. A temperature profile showing a warm layer above the ground is most likely to be found in advance of a warm front during the cold season, but can occasionally be found behind a passing cold front . Like other precipitation, hail forms in storm clouds when supercooled water droplets freeze on contact with condensation nuclei , such as dust or dirt. The storm's updraft blows

40579-438: The rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds ), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air (see katabatic wind ) on

40796-411: The risk of fires, presenting further risk of carbon and methane to release into the atmosphere. Due to their naturally high moisture content, pristine mires have a generally low risk of fire ignition. The drying of this waterlogged state means that the carbon-dense vegetation becomes vulnerable to fire. In addition, due to the oxygen deficient nature of the vegetation, the peat fires can smolder beneath

41013-427: The scenario most similar to today, SSP2-4.5 , around 60% of the current infrastructure would be at high risk by 2090 and simply maintaining it would cost $ 6.31 billion, with adaptation reducing these costs by 20.9% at most. Holding the global warming to 2 °C (3.6 °F) would reduce these costs to $ 5.65 billion, and fulfilling the optimistic Paris Agreement target of 1.5 °C (2.7 °F) would save

41230-419: The second half of the century. Reducing greenhouse gas emissions in line with the Paris Agreement is projected to stabilize the risk after mid-century; otherwise, it'll continue to worsen. In Alaska alone, damages to infrastructure by the end of the century would amount to $ 4.6 billion (at 2015 dollar value) if RCP8.5 , the high-emission climate change scenario , were realized. Over half stems from

41447-628: The soil remains frozen. The Melnikov Permafrost Institute in Yakutsk found that pile foundations should extend down to 15 metres (49 ft) to avoid the risk of buildings sinking. At this depth the temperature does not change with the seasons, remaining at about −5 °C (23 °F). Two other approaches are building on an extensive gravel pad (usually 1–2 m (3 ft 3 in – 6 ft 7 in) thick); or using anhydrous ammonia heat pipes . The Trans-Alaska Pipeline System uses heat pipes built into vertical supports to prevent

41664-702: The southern Brooks Range, where they could potentially threaten both the Trans Alaska Pipeline System (TAPS) corridor and the Dalton Highway , which is the main transport link between the Interior Alaska and the Alaska North Slope . As of 2021, there are 1162 settlements located directly atop the Arctic permafrost, which host an estimated 5 million people. By 2050, permafrost layer below 42% of these settlements

41881-455: The standard for measuring precipitation, there are many areas in which their use is not feasible. This includes the vast expanses of ocean and remote land areas. In other cases, social, technical or administrative issues prevent the dissemination of gauge observations. As a result, the modern global record of precipitation largely depends on satellite observations. Satellite sensors work by remotely sensing precipitation—recording various parts of

42098-565: The strengths and minimize the weaknesses of the individual input data sets. The goal is to provide "best" estimates of precipitation on a uniform time/space grid, usually for as much of the globe as possible. In some cases the long-term homogeneity of the dataset is emphasized, which is the Climate Data Record standard. Alternatively, the High Resolution Precipitation Product aims to produce

42315-597: The subsequent oxidative degradation results in the release of carbon into the atmosphere. As such, drainage of mires for agriculture transforms them from net carbon sinks to net carbon emitters. Although the emission of methane from mires has been observed to decrease following drainage, the total magnitude of emissions from peatland drainage is often greater as rates of peat accumulation are low. Peatland carbon has been described as "irrecoverable" meaning that, if lost due to drainage, it could not be recovered within time scales relevant to climate mitigation. When undertaken in such

42532-593: The surface causing incomplete combustion of the organic matter and resulting in extreme emissions events. In recent years, the occurrence of wildfires in peatlands has increased significantly worldwide particularly in the tropical regions. This can be attributed to a combination of drier weather and changes in land use which involve the drainage of water from the landscape. This resulting loss of biomass through combustion has led to significant emissions of greenhouse gasses both in tropical and boreal/temperate peatlands. Fire events are predicted to become more frequent with

42749-424: The surface, or ice. Mixtures of different types of precipitation, including types in different categories, can fall simultaneously. Liquid forms of precipitation include rain and drizzle. Rain or drizzle that freezes on contact within a subfreezing air mass is called "freezing rain" or "freezing drizzle". Frozen forms of precipitation include snow, ice needles , ice pellets , hail , and graupel . The dew point

42966-474: The surface. However, only a fraction of this stored carbon is expected to enter the atmosphere. In general, the volume of permafrost in the upper 3 m of ground is expected to decrease by about 25% per 1 °C (1.8 °F) of global warming, yet even under the RCP8.5 scenario associated with over 4 °C (7.2 °F) of global warming by the end of the 21st century, about 5% to 15% of permafrost carbon

43183-537: The surrounding ground begins to jut outward at a slope. This can eventually result in the formation of large-scale land forms around this core of permafrost, such as palsas – long (15–150 m (49–492 ft)), wide (10–30 m (33–98 ft)) yet shallow (<1–6 m (3 ft 3 in – 19 ft 8 in) tall) peat mounds – and the even larger pingos , which can be 3–70 m (10–230 ft) high and 30–1,000 m (98–3,281 ft) in diameter . Only plants with shallow roots can survive in

43400-512: The surrounding land. A quagmire is a floating (quaking) mire, bog, or any peatland being in a stage of hydrosere or hydrarch (hydroseral) succession, resulting in pond-filling yields underfoot. Ombrotrophic types of quagmire may be called quaking bog (quivering bog). Minerotrophic types can be named with the term quagfen. Some swamps can also be peatlands (e.g.: peat swamp forest ), while marshes are generally not considered to be peatlands. Swamps are characterized by their forest canopy or

43617-476: The system from sequestering carbon again. The global distribution of tropical peatlands is concentrated in Southeast Asia where agricultural use of peatlands has been increased in recent decades. Large areas of tropical peatland have been cleared and drained for the production of food and cash crops such as palm oil. Large-scale drainage of these plantations often results in subsidence , flooding, fire and deterioration of soil quality . Small scale encroachment on

43834-859: The top 2.5 meters of clay sediments, yet it takes between 10 and 10,000 years for peat sediments and between 1,000 and 1,000,000 years for silt sediments. Permafrost processes such as thermal contraction generating cracks which eventually become ice wedges and solifluction – gradual movement of soil down the slope as it repeatedly freezes and thaws – often lead to the formation of ground polygons, rings, steps and other forms of patterned ground found in arctic, periglacial and alpine areas. In ice-rich permafrost areas, melting of ground ice initiates thermokarst landforms such as thermokarst lakes , thaw slumps, thermal-erosion gullies, and active layer detachments. Notably, unusually deep permafrost in Arctic moorlands and bogs often attracts meltwater in warmer seasons, which pools and freezes to form ice lenses , and

44051-435: The transfer of carbon from permafrost soils to terrestrial vegetation and microbes, to the atmosphere, back to vegetation, and finally back to permafrost soils through burial and sedimentation due to cryogenic processes. Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle. The cycle includes the exchange of carbon dioxide and methane between terrestrial components and

44268-836: The tropics is therefore dominated by woody material from trunks of trees and shrubs and contain little to none of the sphagnum moss that dominates in boreal peatlands. It's only partly decomposed and the surface consists of a thick layer of leaf litter. Forestry in peatlands leads to drainage and rapid carbon losses since it decreases inputs of organic matter and accelerate the decomposition. In contrast to temperate wetlands, tropical peatlands are home to several species of fish. Many new, often endemic, species has been discovered but many of them are considered threatened. The tropical peatlands in Southeast Asia only cover 0.2% of Earth's land area but CO 2 emissions are estimated to be 2 Gt per year, equal to 7% of global fossil fuel emissions. These emissions get bigger with drainage and burning of peatlands and

44485-421: The tropics) and fires, which are predicted to become more frequent with climate change . The destruction of peatlands results in release of stored greenhouse gases into the atmosphere, further exacerbating climate change. For botanists and ecologists, the term peatland is a general term for any terrain dominated by peat to a depth of at least 30 cm (12 in), even if it has been completely drained (i.e.,

44702-437: The tropics—and becomes progressively less useful in areas where stratiform (layered) precipitation dominates, especially in mid- and high-latitude regions. The more-direct physical connection between hydrometeors and microwave channels gives the microwave estimates greater skill on short time and space scales than is true for IR. However, microwave sensors fly only on low Earth orbit satellites, and there are few enough of them that

44919-424: The very high emission scenario RCP8.5, 46% of industrial and contaminated sites would start thawing by 2050, and virtually all of them would be affected by the thaw by 2100. Organochlorines and other persistent organic pollutants are of a particular concern, due to their potential to repeatedly reach local communities after their re-release through biomagnification in fish. At worst, future generations born in

45136-434: The warming and drying of the global climate. The United Nations Convention on Biological Diversity highlights peatlands as key ecosystems to be conserved and protected. The convention requires governments at all levels to present action plans for the conservation and management of wetland environments. Wetlands are also protected under the 1971 Ramsar Convention . Often, restoration is done by blocking drainage channels in

45353-444: The water drains or evaporates, soil structure weakens and sometimes becomes viscous until it regains strength with decreasing moisture content. One visible sign of permafrost degradation is the random displacement of trees from their vertical orientation in permafrost areas. Global warming has been increasing permafrost slope disturbances and sediment supplies to fluvial systems, resulting in exceptional increases in river sediment. On

45570-405: The water surface and the air above. Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds (see satellite picture) which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height,

45787-447: The westerlies steer from west to east. Most summer rainfall occurs during thunderstorms and from occasional tropical cyclones. Humid subtropical climates lie on the east side continents, roughly between latitudes 20° and 40° degrees from the equator. An oceanic (or maritime) climate is typically found along the west coasts at the middle latitudes of all the world's continents, bordering cool oceans, as well as southeastern Australia, and

46004-479: The wet season. Animals have adaptation and survival strategies for the wetter regime. The previous dry season leads to food shortages into the wet season, as the crops have yet to mature. Developing countries have noted that their populations show seasonal weight fluctuations due to food shortages seen before the first harvest, which occurs late in the wet season. Permafrost Permafrost (from perma-  ' permanent ' and frost )

46221-512: The world's largest crops. In comparison to alternatives, palm oil is considered to be among the most efficient sources of vegetable oil and biofuel , requiring only 0.26 hectares of land to produce 1 ton of oil. Palm oil has therefore become a popular cash crop in many low-income countries and has provided economic opportunities for communities. With palm oil as a leading export in countries such as Indonesia and Malaysia, many smallholders have found economic success in palm oil plantations. However,

46438-438: The worst storm expected in any single year. The term 1 in 100 year storm describes a rainfall event which is extremely rare and which will occur with a likelihood of only once in a century, so has a 1 percent likelihood in any given year. The rainfall will be extreme and flooding to be worse than a 1 in 10 year event. As with all probability events, it is possible though unlikely to have two "1 in 100 Year Storms" in

46655-469: The year 2022 concluded that if the goal of preventing 2 °C (3.6 °F) of warming was realized, then the average annual permafrost emissions throughout the 21st century would be equivalent to the year 2019 annual emissions of Russia. Under RCP4.5, a scenario considered close to the current trajectory and where the warming stays slightly below 3 °C (5.4 °F), annual permafrost emissions would be comparable to year 2019 emissions of Western Europe or

46872-528: Was built up over thousands of years. This amount equals almost half of all organic material in all soils , and it is about twice the carbon content of the atmosphere , or around four times larger than the human emissions of carbon between the start of the Industrial Revolution and 2011. Further, most of this carbon (~1,035 billion tons) is stored in what is defined as the near-surface permafrost, no deeper than 3 metres (9.8 ft) below

47089-444: Was frozen and stable, and so are vulnerable to collapse if it thaws. Estimates suggest nearly 70% of such infrastructure is at risk by 2050, and that the associated costs could rise to tens of billions of dollars in the second half of the century. Furthermore, between 13,000 and 20,000 sites contaminated with toxic waste are present in the permafrost, as well as the natural mercury deposits, which are all liable to leak and pollute

#119880