Blue Origin NS-22
121-466: A sounding rocket or rocketsonde , sometimes called a research rocket or a suborbital rocket , is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are used to launch instruments from 48 to 145 km (30 to 90 miles) above the surface of the Earth, the altitude generally between weather balloons and satellites ;
242-411: A is more than R /2. The specific orbital energy ϵ {\displaystyle \epsilon } is given by: ε = − μ 2 a > − μ R {\displaystyle \varepsilon =-{\mu \over {2a}}>-{\mu \over {R}}\,\!} where μ {\displaystyle \mu \,\!}
363-663: A Defense Area formed a circle around these cities and bases. There was no fixed number of Nike batteries in a Defense Area and the actual number of batteries varied from a low of 2 in the Barksdale AFB Defense Area to a high of 22 in the Chicago Defense Area. In the US the sites were numbered from 01 to 99 starting at the north and increasing clockwise. The numbers had no relation to actual compass headings, but generally Nike sites numbered 01 to 25 were to
484-410: A LEO. On a 10,000-kilometer intercontinental flight, such as that of an intercontinental ballistic missile or possible future commercial spaceflight , the maximum speed is about 7 km/s, and the maximum altitude may be more than 1300 km. Any spaceflight that returns to the surface, including sub-orbital ones, will undergo atmospheric reentry . The speed at the start of the reentry is basically
605-534: A Sounding Rocket such as the Nike-Apache may deposit sodium clouds to observe very high altitude winds. Larger, higher altitude rockets have multiple stages to increase altitude and/or payload capability. The freefall part of the flight is an elliptic trajectory with vertical major axis allowing the payload to appear to hover near its apogee . The average flight time is less than 30 minutes; usually between five and 20 minutes. The rocket consumes its fuel on
726-665: A battery in Leonardo, New Jersey on 22 May 1958, killing 6 soldiers and 4 civilians. A memorial can be found at Fort Hancock in the Sandy Hook Unit of the Gateway National Recreation Area . As early as April 1952, planners expressed concerns over the Ajax's ability to pick out targets in a packed formation. The Nike radar would see several nearby targets as a single larger one, unable to resolve
847-471: A crew of two pilots, to an altitude of 200 km (65,000 ft) using captured V-2 . In 2004, a number of companies worked on vehicles in this class as entrants to the Ansari X Prize competition. The Scaled Composites SpaceShipOne was officially declared by Rick Searfoss to have won the competition on October 4, 2004, after completing two flights within a two-week period. In 2005, Sir Richard Branson of
968-402: A distinct boundary between atmospheric flight and spaceflight . During freefall the trajectory is part of an elliptic orbit as given by the orbit equation . The perigee distance is less than the radius of the Earth R including atmosphere, hence the ellipse intersects the Earth, and hence the spacecraft will fail to complete an orbit. The major axis is vertical, the semi-major axis
1089-500: A flight is attained at the lowest altitude of this free-fall trajectory, both at the start and at the end of it. If one's goal is simply to "reach space", for example in competing for the Ansari X Prize , horizontal motion is not needed. In this case the lowest required delta-v, to reach 100 km altitude, is about 1.4 km/s . Moving slower, with less free-fall, would require more delta-v. Compare this with orbital spaceflights:
1210-656: A ground-based computer associated with radar which would track both the target and the missile in flight. This was not the only Army missile project at the time; the US Army Air Force was involved in studies of the Ground-to-Air Pilotless Aircraft (GAPA), a slightly longer-range system based on what was essentially a drone aircraft. Bell had been invited to take part in GAPA as well, but declined as they wanted to concentrate on Nike. GAPA
1331-511: A lift off from Texas and a simulated soft touchdown in the Indian Ocean 66 minutes after liftoff. Sub-orbital flights can last from just seconds to days. Pioneer 1 was NASA 's first space probe , intended to reach the Moon . A partial failure caused it to instead follow a sub-orbital trajectory, reentering the Earth's atmosphere 43 hours after launch. To calculate the time of flight for
SECTION 10
#17327726981361452-482: A low Earth orbit (LEO), with an altitude of about 300 km, needs a speed around 7.7 km/s, requiring a delta-v of about 9.2 km/s. (If there were no atmospheric drag the theoretical minimum delta-v would be 8.1 km/s to put a craft into a 300-kilometer high orbit starting from a stationary point like the South Pole. The theoretical minimum can be up to 0.46 km/s less if launching eastward from near
1573-765: A minimum-delta-v trajectory, according to Kepler's third law , the period for the entire orbit (if it did not go through the Earth) would be: period = ( semi-major axis R ) 3 2 × period of low Earth orbit = ( 1 + sin θ 2 ) 3 2 2 π R g {\displaystyle {\text{period}}=\left({\frac {\text{semi-major axis}}{R}}\right)^{\frac {3}{2}}\times {\text{period of low Earth orbit}}=\left({\frac {1+\sin \theta }{2}}\right)^{\frac {3}{2}}2\pi {\sqrt {\frac {R}{g}}}} Using Kepler's second law , we multiply this by
1694-478: A quarter of the way around the Earth, and 42 minutes for going halfway around. For short distances, this expression is asymptotic to 2 d / g {\displaystyle {\sqrt {2d/g}}} . From the form involving arccosine, the derivative of the time of flight with respect to d (or θ) goes to zero as d approaches 20 000 km (halfway around the world). The derivative of Δ v also goes to zero here. So if d = 19 000 km ,
1815-538: A serious problem for the planners, and especially the Corps of Engineers Real Estate Offices. As early as 1952 they had asked for a solution, which led to design architect Leon Chatelain Jr. developing an underground configuration. As the missile batteries were now protected and accidental explosions would be contained, the safe area was dramatically reduced, and that cut the land requirement down to 40 acres (16 ha). This
1936-424: A signal from the computer. The warheads were surrounded by metal cubes providing a blast-fragmentation effect. The Nike Ajax system could attack only one target at a time, a problem it shared with its descendants. As the various Ajax missile sites were overlapped, this led to the possibility that two sites might attack one target while another flew past both. ARADCOM initially set up a coordination system not unlike
2057-442: A single Boeing B-17 Flying Fortress . Flying faster means that the aircraft passes through the range of a gun more rapidly, reducing the number of rounds a particular gun can fire at that aircraft. Flying at higher altitudes often has a similar effect, as it requires larger shells to reach those altitudes, and this typically results in slower firing rates for a variety of practical reasons. Aircraft using jet engines roughly double
2178-636: A small Liquid-propellant rocket to provide the GALCIT team necessary experience to aid in developing the Corporal missile. Malina with Tsien Hsue-shen ( Qian Xuesen in Pinyin transliteration), wrote "Flight analysis of a Sounding Rocket with Special Reference to Propulsion by Successive Impulses." As the Signal Corps rocket was being developed for the Corporal project, and lacked any guidance mechanism, it
2299-510: A sounding rocket also makes launching from temporary sites possible, allowing field studies at remote locations, and even in the middle of the ocean, if fired from a ship. Weather observations, up to an altitude of 75 km, are done with rocketsondes , a kind of sounding rocket for atmospheric observations that consists of a rocket and radiosonde . The sonde records data on temperature , moisture , wind speed and direction, wind shear , atmospheric pressure , and air density during
2420-554: A survey or a poll". Sounding in the rocket context is equivalent to "taking a measurement". The basic elements of a modern sounding rocket are a solid-fuel rocket motor and a science payload . In certain Sounding Rockets the payload may even be nothing more than a smoke trail as in the Nike Smoke which is used to determine wind directions and strengths more accurately than may be determined by weather balloons . Or
2541-559: Is a spaceflight in which the spacecraft reaches outer space , but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity . For example, the path of an object launched from Earth that reaches the Kármán line (about 83 km [52 mi] – 100 km [62 mi] above sea level ), and then falls back to Earth,
SECTION 20
#17327726981362662-424: Is a hypersonic suborbital spaceplane concept that could transport 50 passengers from Australia to Europe in 90 minutes or 100 passengers from Europe to California in 60 minutes. The main challenge lies in increasing the reliability of the different components, particularly the engines, in order to make their use for passenger transportation on a daily basis possible. MIM-3 Nike Ajax The Nike Ajax
2783-423: Is as scientific sounding rockets . Scientific sub-orbital flights began in the 1920s when Robert H. Goddard launched the first liquid fueled rockets, however they did not reach space altitude. In the late 1940s, captured German V-2 ballistic missiles were converted into V-2 sounding rockets which helped lay the foundation for modern sounding rockets. Today there are dozens of different sounding rockets on
2904-435: Is between 0 and μ 2 R {\displaystyle \mu \over {2R}\,\!} . To minimize the required delta-v (an astrodynamical measure which strongly determines the required fuel ), the high-altitude part of the flight is made with the rockets off (this is technically called free-fall even for the upward part of the trajectory). (Compare with Oberth effect .) The maximum speed in
3025-624: Is considered a sub-orbital spaceflight. Some sub-orbital flights have been undertaken to test spacecraft and launch vehicles later intended for orbital spaceflight . Other vehicles are specifically designed only for sub-orbital flight; examples include crewed vehicles, such as the X-15 and SpaceShipTwo , and uncrewed ones, such as ICBMs and sounding rockets . Flights which attain sufficient velocity to go into low Earth orbit , and then de-orbit before completing their first full orbit, are not considered sub-orbital. Examples of this include flights of
3146-468: Is defined as a missile that can hit a target at least 5500 km away, and according to the above formula this requires an initial speed of 6.1 km/s. Increasing the speed to 7.9 km/s to attain any point on Earth requires a considerably larger missile because the amount of fuel needed goes up exponentially with delta-v (see Rocket equation ). The initial direction of a minimum-delta-v trajectory points halfway between straight up and straight toward
3267-1134: Is maximized (at about 1320 km) for a trajectory going one quarter of the way around the Earth ( 10 000 km ). Longer ranges will have lower apogees in the minimal-delta-v solution. specific kinetic energy at launch = μ R − μ major axis = μ R sin θ 1 + sin θ {\displaystyle {\text{specific kinetic energy at launch}}={\frac {\mu }{R}}-{\frac {\mu }{\text{major axis}}}={\frac {\mu }{R}}{\frac {\sin \theta }{1+\sin \theta }}} Δ v = speed at launch = 2 μ R sin θ 1 + sin θ = 2 g R sin θ 1 + sin θ {\displaystyle \Delta v={\text{speed at launch}}={\sqrt {2{\frac {\mu }{R}}{\frac {\sin \theta }{1+\sin \theta }}}}={\sqrt {2gR{\frac {\sin \theta }{1+\sin \theta }}}}} (where g
3388-425: Is similar to an ICBM. ICBMs have delta-v's somewhat less than orbital; and therefore would be somewhat cheaper than the costs for reaching orbit, but the difference is not large. Due to the high cost of spaceflight, suborbital flights are likely to be initially limited to high value, very high urgency cargo deliveries such as courier flights, military fast-response operations or space tourism . The SpaceLiner
3509-412: Is the standard gravitational parameter . Almost always a < R , corresponding to a lower ϵ {\displaystyle \epsilon } than the minimum for a full orbit, which is − μ 2 R {\displaystyle -{\mu \over {2R}}\,\!} Thus the net extra specific energy needed compared to just raising the spacecraft into space
3630-447: Is the acceleration of gravity at the Earth's surface). The Δ v increases with range, leveling off at 7.9 km/s as the range approaches 20 000 km (halfway around the world). The minimum-delta-v trajectory for going halfway around the world corresponds to a circular orbit just above the surface (of course in reality it would have to be above the atmosphere). See lower for the time of flight. An intercontinental ballistic missile
3751-554: The Fractional Orbital Bombardment System . A flight that does not reach space is still sometimes called sub-orbital, but cannot officially be classified as a "sub-orbital spaceflight". Usually a rocket is used, but some experimental sub-orbital spaceflights have also been achieved via the use of space guns . By definition, a sub-orbital spaceflight reaches an altitude higher than 100 km (62 mi) above sea level . This altitude, known as
Sounding rocket - Misplaced Pages Continue
3872-623: The Royal Air Force 's plotting room from the Battle of Britain , with commands from a central manual plotting room being sent to batteries over telephone lines. This was clearly inadequate, and in the late 1950s the Interim Battery Data Link was introduced to share data between batteries. This allowed command to be devolved to the battery commanders, who could see which targets other batteries were attacking. This system
3993-461: The V-2 rocket , just reaching space but with a range of about 330 km, the maximum speed was 1.6 km/s. Scaled Composites SpaceShipTwo which is under development will have a similar free-fall orbit but the announced maximum speed is 1.1 km/s (perhaps because of engine shut-off at a higher altitude). For larger ranges, due to the elliptic orbit the maximum altitude can be much more than for
4114-580: The Veronique (rocket) was began in 1949, it was not until 1952 that the first full scale Veronique was launched. Veronique variants were flown until 1974. The Monica (rocket) family, an all solid fueled which was pursued in a number of versions and later replaced by the ONERA. series of rockets. Japan was another early user with the Kappa (rocket) . Japan also pursued Rockoons. The People's Republic of China
4235-656: The Virgin Group announced the creation of Virgin Galactic and his plans for a 9-seat capacity SpaceShipTwo named VSS Enterprise . It has since been completed with eight seats (one pilot, one co-pilot and six passengers) and has taken part in captive-carry tests and with the first mother-ship WhiteKnightTwo , or VMS Eve . It has also completed solitary glides, with the movable tail sections in both fixed and "feathered" configurations. The hybrid rocket motor has been fired multiple times in ground-based test stands, and
4356-796: The WAC Corporal , Aerobee , and Viking . The German V-2 served both the US and the USSR's R-1 missile as sounding rockets during the immediate Post World War II periods. During the 1950s and later the inexpensive availability of surplus military boosters such as those used by the Nike , Talos , Terrier , and Sparrow . Since the 1960s designed for the purpose rockets such as the Black Brant series have dominated sounding rockets, though often having additional stages, many from military surplus. The earliest attempts at developing Sounding Rockets were in
4477-472: The exoatmospheric region between 97 and 201 km (60 and 125 miles). The origin of the term comes from nautical vocabulary to sound , which is to throw a weighted line from a ship into the water to measure the water's depth. The term itself has its etymological roots in the Romance languages word for probe , of which there are nouns sonda and sonde and verbs like sondear which means "to do
4598-440: The first stage of the rising part of the flight, then often separates and falls away, leaving the payload to complete the arc, sometimes descending under a drag source such as a small balloon or a parachute . Sounding rockets have utilized balloons, airplanes and artillery as "first stages." Project Farside utilized a Rockoon composed of a 106,188-m3 (3,750-ft3) balloon, lifting a four stage rocket composed of 4 Recrute rockets as
4719-464: The flight phases before and after the free-fall can vary. For an intercontinental flight the boost phase takes 3 to 5 minutes, the free-fall (midcourse phase) about 25 minutes. For an ICBM the atmospheric reentry phase takes about 2 minutes; this will be longer for any soft landing, such as for a possible future commercial flight. Test flight 4 of the SpaceX 'Starship' performed such a flight with
4840-672: The hypergolic fuels, and a variety of service areas. Long distance surveillance was handled by the ACQ or LOPAR radar, short for "Low-Power Acquisition Radar." LOPAR included an IFF system and a system for handing off targets to the tracking radars. Two monopulse tracking radars were used, the Target Tracking Radar (TTR) to track the target handed off by the LOPAR, and the Missile Tracking Radar (MTR) to track
4961-404: The "amplitude null system", with the latter being selected. This study resulted in the development of tunable magnetrons for the 250 kilowatt X-band radars for tracking, and 1000 kilowatt S-band radar for target detection. Experiments demonstrated that the radar return from the missile at high altitudes was limited, and when calls for an extended altitude of 150,000 feet (46,000 m) were added to
Sounding rocket - Misplaced Pages Continue
5082-594: The 1950s quickly rendered the MIM-3 obsolete. It was unable to defend against more capable bombers or multiple targets in formation, and had relatively short range. Even while Nike was being deployed, these concerns led to the contracts for the greatly improved MIM-14 Nike Hercules , which began deployment in 1959. As Hercules developed, the threat moved from bombers to ICBMs , and the LIM-49 Nike Zeus anti-ballistic missile project started to address these. All of
5203-422: The 93,000 lbf (410 kN ) of booster power would accelerate the missile to supersonic speeds of 1,750 feet per second (1,190 mph; 530 m/s) at the end of a booster phase of 1.8 seconds, increasing almost continually to about 2,500 feet per second (1,700 mph; 760 m/s) at the end of the liquid engine's firing, then decreasing to 1,150 feet per second (780 mph; 350 m/s) during
5324-784: The Aerobee ultimately powered the second stage of the Vanguard (rocket) , the first designed for the purpose Satellite Launch Vehicle , Vanguard. The AJ10 engine used by many Aerobees eventually evolved into the AJ10-190 which formed the Orbital Maneuvering System of the Space Shuttle. The Viking (rocket) was intended from the start by the Navy not only to be a sounding rocket capable of replacing, even exceeding
5445-609: The Allegheny JATO T39 2.6DS-51,000. The Navy's similar booster can be seen on the RIM-2 Terrier . A new series of test firings started in September 1948 but were stopped until May 1949 after a number of modifications were carried out. Funding problems then delayed the program until January 1950. From late January through April another 16 missiles were fired, with much better results. Through early development,
5566-723: The Hercules was deployed at new bases, providing coverage over existing Ajax areas. But plans had been made to convert existing Ajax sites to Hercules where possible, or close the Ajax base where it was not. As the Hercules had over double the range of the Ajax, fewer sites were needed to provide the same coverage. A total of 134 Hercules bases were commissioned, down from Ajax's 240. The last US Ajax site, outside Norfolk, Virginia , closed in November 1963. Ajax remained in active service in overseas locations for some time. The Japan Self-Defense Forces operated theirs until they were replaced by
5687-623: The Hercules-based Nike J in the 1970s. As the original Bell Nike team worked on Hercules, the nature of the strategic threat was changing. By the late 1950s the concern was the ICBM and little interest in the threat of bombers remained. Even before Hercules deployed, Bell was once again asked to consider the new threat. They concluded that the Nike B (Hercules) could be adapted into an anti-ballistic missile with relatively few changes to
5808-683: The Homestead AFB/Miami Defense Area, those starting with NY were in the New York Defense Area, and so forth. As an example Nike Site SF-88L refers to the launcher area (L) of the battery located in the northwestern part (88) of the San Francisco Defense Area (SF). Studies throughout the Nike project considered mobile launchers, but none were developed for the Ajax system. Missile sites were "relocatable" or "transportable", and all of
5929-609: The Kármán line, was chosen by the Fédération Aéronautique Internationale because it is roughly the point where a vehicle flying fast enough to support itself with aerodynamic lift from the Earth's atmosphere would be flying faster than orbital speed . The US military and NASA award astronaut wings to those flying above 50 mi (80 km), although the U.S. State Department does not show
6050-664: The Nike project had not been considered very important. A series of events in the late 1940s led to a re-appraisal of the situation, including the Soviet atomic test in 1949, the communist victory in China, and the Berlin Blockade . The June 1950 opening of the Korea War brought all of this to a head and new urgency was given to US defense. In October 1950, US Secretary of Defense Charles E. Wilson appointed Kaufman Keller to
6171-540: The Nike projects were led by Bell Labs, due to their early work in radar guidance systems during World War II . Part of the Nike Ajax development program designed a new solid fuel rocket motor used for the missile's booster. This had originally been designed for the United States Navy 's missiles, and was enlarged for the Nike efforts. The rocket was so useful that it found numerous applications outside
SECTION 50
#17327726981366292-635: The Soviet Union. While all of the early rocket developers were concerned largely with developing the ability to launch rockets some had the objective of investigating the stratosphere and beyond. The All-Union Conference on the Study of Stratosphere was held in Leningrad (now St. Petersburg) in 1936. While the conference primarily dealt with balloon Radiosondes , there was a small group of rocket developers who sought to develop "recording rockets" to explore
6413-473: The TTR and MTR were sent to the analog tracking computer, which continually calculated the impact point and sent radio commands to the missile to guide it. In order to maximize range, the missile was normally flown almost vertically to a higher altitude than the target, where the thinner air lowered drag and allowed the missile to descend on its target. At the correct time, the missile's three warheads were triggered by
6534-616: The U.S.S.R in Moscow designed the R-06 which eventually flew but not in the meteorological role. The early Soviet efforts to develop a sounding rocket were the earliest efforts to develop a sounding rocket and ultimately failed before WWII. P. I. Ivanov built a three-stage which flew in March 1946. At the end of summer 1946 development ended because it lacked sufficient thrust to loft a sufficient research payload. The first successful sounding rocket
6655-831: The V-2, but also to advance guided missile technology. The Viking was controlled by a multi-axis guidance system with gimbled Reaction Motors XLR10-RM-2 engine. The Viking was developed through two major versions. After the United States announced it intended to launch a satellite in the International Geophysical Year (1957-1958) the Viking was chosen as the first stage of the Vanguard Satellite Launch Vehicle. The last two Vikings were fired as Vanguard Test Vehicle 1 and 2. During
6776-490: The administration area, area A, the magazine and launcher area with the missiles, L, and the Integrated Fire Control area with the radar and operations center, or IFC. Most sites placed the A and IFC on one parcel of land with the L on another, but some sites used three entirely separate areas. The IFC was located between 1,000 yards and a mile from the launchers, but had to be within the line-of-sight so
6897-406: The altitude required to qualify as reaching space. The flight path will be either vertical or very steep, with the spacecraft landing back at its take-off site. The spacecraft will shut off its engines well before reaching maximum altitude, and then coast up to its highest point. During a few minutes, from the point when the engines are shut off to the point where the atmosphere begins to slow down
7018-402: The angle that the projectile is to go around the Earth, so in degrees it is 45°× d / 10 000 km . The minimum-delta-v trajectory corresponds to an ellipse with one focus at the centre of the Earth and the other at the point halfway between the launch point and the destination point (somewhere inside the Earth). (This is the orbit that minimizes the semi-major axis, which is equal to the sum of
7139-401: The challenge, and Project Nike was officially formed on 8 February 1945. The Bell team was given the task of attacking bombers flying at 500 mph (800 km/h) or more, at altitudes between 20,000 and 60,000 feet (6,100 and 18,300 m), and performing a 3 g turn at 40,000 feet (12,000 m). Bell reported back on 14 May 1945 (and a formal report the next day) that such a development
7260-520: The chance that any one shell will damage or destroy its target is very small. Successful anti-aircraft gunnery therefore requires as many rounds to be fired as possible. During the Blitz , British anti-aircraft gunners fired 49,044 shells in January 1941 for 12 kills, almost 4,100 shells per success. German gunners did better against Allied daylight raids, firing an estimated average of 2,800 shells to down
7381-669: The course of investigations by the German peace movement , this cooperation was revealed by a group of physicists in 1983. The international discussion that was thus set in motion led to the development of the Missile Technology Control Regime (MTCR) at the level of G7 states. Since then, lists of technological equipment whose export is subject to strict controls have been drawn up within the MTCR framework. Sub-orbital spaceflight A sub-orbital spaceflight
SECTION 60
#17327726981367502-473: The destination point (which is below the horizon). Again, this is the case if the Earth's rotation is ignored. It is not exactly true for a rotating planet unless the launch takes place at a pole. In a vertical flight of not too high altitudes, the time of the free-fall is both for the upward and for the downward part the maximum speed divided by the acceleration of gravity , so with a maximum speed of 1 km/s together 3 minutes and 20 seconds. The duration of
7623-1764: The distances from a point on the orbit to the two foci. Minimizing the semi-major axis minimizes the specific orbital energy and thus the delta-v, which is the speed of launch.) Geometrical arguments lead then to the following (with R being the radius of the Earth, about 6370 km): major axis = ( 1 + sin θ ) R {\displaystyle {\text{major axis}}=(1+\sin \theta )R} minor axis = R 2 ( sin θ + sin 2 θ ) = R sin ( θ ) semi-major axis {\displaystyle {\text{minor axis}}=R{\sqrt {2\left(\sin \theta +\sin ^{2}\theta \right)}}={\sqrt {R\sin(\theta ){\text{semi-major axis}}}}} distance of apogee from centre of Earth = R 2 ( 1 + sin θ + cos θ ) {\displaystyle {\text{distance of apogee from centre of Earth}}={\frac {R}{2}}(1+\sin \theta +\cos \theta )} altitude of apogee above surface = ( sin θ 2 − sin 2 θ 2 ) R = ( 1 2 sin ( θ + π 4 ) − 1 2 ) R {\displaystyle {\text{altitude of apogee above surface}}=\left({\frac {\sin \theta }{2}}-\sin ^{2}{\frac {\theta }{2}}\right)R=\left({\frac {1}{\sqrt {2}}}\sin \left(\theta +{\frac {\pi }{4}}\right)-{\frac {1}{2}}\right)R} The altitude of apogee
7744-572: The downward acceleration, the passengers will experience weightlessness . Megaroc had been planned for sub-orbital spaceflight by the British Interplanetary Society in the 1940s. In late 1945, a group led by M. Tikhonravov K. and N. G. Chernysheva at the Soviet NII-4 academy (dedicated to rocket artillery science and technology), began work on a stratospheric rocket project, VR-190 , aimed at vertical flight by
7865-484: The east to be located in the city itself. Moreover, various scenarios demonstrated that having a staggered two-layer layout of the sites would offer much greater protection, which argued for some bases to be located closer to the urban centers. For range safety reasons, launch sites had to have considerable empty land around them in the event of an accidental warhead or fuel explosion. Originally this would require about 119 acres (48 ha) of land per site. This presented
7986-498: The equator.) For sub-orbital spaceflights covering a horizontal distance the maximum speed and required delta-v are in between those of a vertical flight and a LEO. The maximum speed at the lower ends of the trajectory are now composed of a horizontal and a vertical component. The higher the horizontal distance covered, the greater the horizontal speed will be. (The vertical velocity will increase with distance for short distances but will decrease with distance at longer distances.) For
8107-538: The existing missile, which they called "Nike Ajax", while a slightly enlarged missile with the XW-7 warhead was known as "Nike Hercules". The Army selected the Hercules option, ordering it into development in December 1952. At the time, the missiles were officially known as Nike I and Nike B . As part of DA Circular 700–22, Nike I officially became Nike Ajax and Nike B became Nike Hercules . The nuclear-armed Nike B
8228-492: The first stage with 1 Recruit as the second stage, with 4 Arrow II motors composing the third stage and finally a single Arrow II as the fourth stage. Sparoair , air launched from Navy F4D and F-4 fighters were examples of air launched sounding rockets. There were also examples of artillery launched sounding rockets including Project HARP 's 5", 7", and 15" guns, sometimes having additional Martlet rocket stages. The earliest Sounding Rockets were liquid propellant rockets such as
8349-571: The first successful Sounding Rocket the WAC Corporal . By the early 1960s the Sounding Rocket was established technology. Sounding rockets are advantageous for some research because of their low cost, relatively short lead time (sometimes less than six months) and their ability to conduct research in areas inaccessible to either balloons or satellites. They are also used as test beds for equipment that will be used in more expensive and risky orbital spaceflight missions. The smaller size of
8470-521: The flight. Position data ( altitude and latitude / longitude ) may also be recorded. Common meteorological rockets are the Loki and Super Loki , typically 3.7 m tall and powered by a 10 cm diameter solid fuel rocket motor . The rocket motor separates at an altitude of 1500 m and the rest of the rocketsonde coasts to apogee (highest point). This can be set to an altitude of 20 km to 113 km. Sounding rockets are commonly used for: Due to
8591-465: The high military relevance of ballistic missile technology, there has always been a close relationship between sounding rockets and military missiles. It is a typical dual-use technology , which can be used for both civil and military purposes. During the Cold War , the Federal Republic of Germany cooperated on this topic with countries that had not signed the Non-Proliferation Treaty on Nuclear Weapons at that time, such as Brazil, Argentina and India. In
8712-435: The impact point and send guidance signals to the missile encoded in the second radar's signals, and detonate the warhead on command (as opposed to a proximity fuse ). The Ballistics Research Laboratory was asked to calculate the proper warhead shaping to maximize the chance of a hit. Once determined, Picatinny Arsenal would produce the warhead, and Frankford Arsenal would provide a fuse. Douglas Aircraft would provide
8833-506: The individual aircraft. The warhead's lethal range was smaller than the resolution, so it might not approach any one of the aircraft close enough to damage it. This led to suggestions about equipping the Nike with a nuclear warhead, which would be able to attack the entire formation with a single round. Bell was asked to study this in May, and they considered two options; one using the WX-9 warhead on
8954-475: The length of the minimum-delta-v trajectory will be about 19 500 km , but it will take only a few seconds less time than the trajectory for d = 20 000 km (for which the trajectory is 20 000 km long). While there are a great many possible sub-orbital flight profiles, it is expected that some will be more common than others. The first sub-orbital vehicles which reached space were ballistic missiles . The first ballistic missile to reach space
9075-532: The magnetosphere, ionosphere, thermosphere and mesosphere. Sounding rockets have been used for the examination of atmospheric nuclear tests by revealing the passage of the shock wave through the atmosphere. In more recent times Sounding Rockets have been used for other nuclear weapons research. Sounding rockets often use military surplus rocket motors. NASA routinely flies the Terrier Mk 70 boosted Improved Orion , lifting 270–450-kg (600–1,000-pound) payloads into
9196-478: The market, from a variety of suppliers in various countries. Typically, researchers wish to conduct experiments in microgravity or above the atmosphere. Research, such as that done for the X-20 Dyna-Soar project suggests that a semi-ballistic sub-orbital flight could travel from Europe to North America in less than an hour. However, the size of rocket, relative to the payload, necessary to achieve this,
9317-489: The maximum altitude for balloons is about 40 km (25 miles) and the minimum for satellites is approximately 121 km (75 miles). Certain sounding rockets have an apogee between 1,000 and 1,500 km (620 and 930 miles), such as the Black Brant X and XII , which is the maximum apogee of their class. For certain purposes Sounding Rockets may be flown to altitudes as high as 3,000 kilometers to allow observing times of around 40 minutes to provide geophysical observations of
9438-445: The maximum speed of the flight. The aerodynamic heating caused will vary accordingly: it is much less for a flight with a maximum speed of only 1 km/s than for one with a maximum speed of 7 or 8 km/s. The minimum delta-v and the corresponding maximum altitude for a given range can be calculated, d , assuming a spherical Earth of circumference 40 000 km and neglecting the Earth's rotation and atmosphere. Let θ be half
9559-669: The mid-war period, the US Army had reached the same conclusion as their German counterparts: artillery-based anti-aircraft weapons were simply no longer useful. Accordingly, in February 1944 the Army Ground Forces sent the Army Service Forces (ASF) a request for information on the possibility of building a "major caliber anti-aircraft rocket torpedo". The ASF concluded that it was simply too early to tell if this
9680-430: The military world as the Ajax missiles were decommissioned in the 1960s. Many sounding rockets used the booster as their first or second stage, and many of those used "Nike" in their name. The inherent inaccuracy of anti-aircraft artillery means that when shells reach their targets they are effectively randomly distributed in the target area. This distribution is much larger than the lethal radius of any given shell, so
9801-405: The missile airframe and carry out aerodynamic studies, while Aerojet would supply a solid fuel rocket booster for initial launch, and Bell Aircraft would provide a liquid fuel rocket for the upper stage sustainer. The initial design used a thin upper stage with eight JATO -derived boosters wrapped around its tail. The resulting cluster looked quite boxy at launch time. It was expected that
9922-426: The missile as it flew toward the target. Launch of the missile was accomplished by lighting the solid fuel booster, which provided 59,000 lbf (260 kN ) of thrust for three seconds. The booster pushed the missile through the sound barrier, and it remained supersonic for the rest of its flight. The MTR picked up the missile as the booster fell away, and then tracked it continually after that point. Data from
10043-567: The missile. The role would require considerably greater upgrades to the radars and computers instead. These efforts gave rise to the Nike II project in 1958, soon known as LIM-49 Nike Zeus . Unlike the earlier Nike efforts, the Zeus would never reach operational status. Like the Ajax and Hercules, Zeus could only attack a single target at a time, although by deploying multiple radars it was expected that up to six missiles could be guided at once. This
10164-443: The newly created position of Director of Guided Weapons to speed their development. Keller examined the various ongoing projects and decided that Nike was the best developed. He recommended that development of Nike be accelerated and that an initial production run of 60 launch stations and 1,000 missiles should be completed by 31 December 1952, with continued production of 1,000 a month after that date. In January 1951, Wilson approved
10285-461: The next four years, 265 batteries were constructed around the majority of major northern and coastal cities. They replaced 896 radar-guided anti-aircraft guns, leaving only a handful of 75 mm Skysweeper emplacements as the only anti-aircraft artillery remaining in use by the US. All of the Skysweepers were removed from service by 1960. Several Nike Ajax missiles exploded accidentally at
10406-400: The northeast and east, those numbered 26 to 50 were to the southeast and south, those numbered 51 to 75 were to the southwest and west, and those numbered 76 to 99 were to the northwest and north. The Defense Areas were identified by a one- or two-letter code which were related to the city name. Thus those Nike sites starting with C were in the Chicago Defense Area, those starting with HM were in
10527-558: The order of 75 miles (121 km). A new long-range search radar was introduced, the HIPAR, but the original AQU radar was retained as well, now known as LOPAR. The tracking radars were also upgraded to higher power. But with those exceptions, Hercules was operationally similar to Ajax, and designed to operate at existing Ajax sites, using their launchers and underground facilities. Conversion from Ajax to Hercules began in June 1958. Initially,
10648-520: The plan, in spite of additional testing being required. A new test series of the proposed production model was carried out starting in October, and on 27 November 1951, Nike successfully intercepted a QB-17 target drone. Twenty-two further tests followed that year. In the new year a new test series started, including a live-fire attack on a QB-17 in April 1952 that was viewed by visiting brass. Production
10769-1946: The portion of the area of the ellipse swept by the line from the centre of the Earth to the projectile: area fraction = 1 π arcsin 2 sin θ 1 + sin θ + 2 cos θ sin θ π (major axis)(minor axis) {\displaystyle {\text{area fraction}}={\frac {1}{\pi }}\arcsin {\sqrt {\frac {2\sin \theta }{1+\sin \theta }}}+{\frac {2\cos \theta \sin \theta }{\pi {\text{(major axis)(minor axis)}}}}} time of flight = ( ( 1 + sin θ 2 ) 3 2 arcsin 2 sin θ 1 + sin θ + 1 2 cos θ sin θ ) 2 R g = ( ( 1 + sin θ 2 ) 3 2 arccos cos θ 1 + sin θ + 1 2 cos θ sin θ ) 2 R g {\displaystyle {\begin{aligned}{\text{time of flight}}&=\left(\left({\frac {1+\sin \theta }{2}}\right)^{\frac {3}{2}}\arcsin {\sqrt {\frac {2\sin \theta }{1+\sin \theta }}}+{\frac {1}{2}}\cos \theta {\sqrt {\sin \theta }}\right)2{\sqrt {\frac {R}{g}}}\\&=\left(\left({\frac {1+\sin \theta }{2}}\right)^{\frac {3}{2}}\arccos {\frac {\cos \theta }{1+\sin \theta }}+{\frac {1}{2}}\cos \theta {\sqrt {\sin \theta }}\right)2{\sqrt {\frac {R}{g}}}\\\end{aligned}}} This gives about 32 minutes for going
10890-555: The post WWII era the USSR also pursued V-2 base sounding rockets. The last two R-1As were flown in 1949 as sounding rockets. They were followed between July 1951 and June 1956 by 4 R-1B, 2 R-1V, 3 R-1D and 5 R-1Es, and 1 R-1E (A-1). The improved V-2 descendant the R-2A could reach 120 miles and were flown between April 1957 and May 1962. Fifteen R-5Vs were flown from June 1965 to October 1983. Two R-5 VAOs were flown in September 1964 and October 1965. The first solid-fueled Soviet sounding rocket
11011-610: The production run. In 1957, the National Guard started taking over the anti-aircraft role, replacing regular army units at Bliss. Deployment of the Nike I was under the direction of the Army Anti-Aircraft Command (ARAACOM). ARAACOM initially proposed a series of widespread bases surrounding cities and major military sites. However, while planning the deployment around Chicago , it became clear that Lake Michigan would force sites protecting approach from
11132-415: The radars could see the missiles as they launched. The launch area normally consisted of two or three underground facilities and their aboveground launchers. Sites with four to six launchers were not unknown. A single launcher site normally held twelve missiles, eight in the service area and four in the underground ready area or on their launchers. When an alert was received, the missiles were transferred to
11253-621: The requirements, a transponder was added to the missile to boost the return. These changes, and many more, were summarized in a 28 January 1946 report. The project called for four rounds of test launches starting in 1946, with the aim of having a production design by 1949. The first test firing of a static round was carried out at the White Sands Proving Ground on 17 September 1946 and then returned to Douglas in California for study. The next week an unguided example
11374-692: The results. After the start of WWII the CIT rocketry enthusiast found themselves involved in a number of defense programs, one of which, deemed Corporal, was intended to produce a bombardment guided missile the Corporal. Eventually known as the MGM-5 Corporal it became the first guided missile deployed by the US Army. During WWII the Signal Corps created a requirement for a sounding rocket to carry 25 pounds (11 kg) of instruments to 100,000 feet (30 km) or higher. To meet that goal Malina proposed
11495-480: The speed and altitude over piston-powered designs, limiting the number of shells so greatly that the chance of hitting the bomber dropped almost to zero. As early as 1942, German flak commanders were keenly aware of the problem, and expecting to face jet bombers, they began developing missiles to supplant their guns. The western allies maintained air superiority for much of the war and their anti-aircraft systems did not see as much pressure to improve. Nevertheless, by
11616-588: The stratosphere and beyond. Amongst the speakers at the conference was Sergey Korolev who later became the leading figure of the Soviet space program. Specifically interested in sounding rocket design were V. V. Razumov, of the Leningrad Group for the Study of Jet Propulsion. A. I. Polyarny working in a special group within the Society for Assistance to the Defense, Aviation and Chemical Construction of
11737-415: The surface one at a time using an elevator, then pushed along rails on the surface leading to the launchers. The launchers bisected the rails, so the missiles were simply pushed over the launchers, connected to the electrical hookups, and then raised to about 85 degrees by the launchers. The missile launch area also contained a separate fueling area surrounded by a large berm, a required safety precaution given
11858-467: The team was forced to give up on the clustered booster concept. Invariably small differences in thrust between the different JATO bottles would lead to significant thrust asymmetries, ones that overwhelmed the stabilizing effect of the fins in spite of them being very large. Instead, the project selected a larger booster being developed by the US Navy 's Operation Bumblebee , creating a new version known as
11979-777: The upper stage of the first two staged rocket the RTV-G-4 Bumper . Captured V-2s dominated American sounding rockets and other rocketry developments during the late 1940s. To meet the need for replacement a new sounding rocket was developed by the Aerojet Corporation to meet a requirement of the Applied Physics Laboratory and the Naval Research Laboratory . Over 1,000 Aerobees of various versions for varied customers were flow between 1947 and 1985. One engine produced for
12100-443: The zooming period. Early in the program, it was realized that existing radar systems based on the conical scanning method did not supply the performance needed for a high-speed missile. In particular, conical scanning radars required some time to settle on an accurate track. The decision was made to use a monopulse radar system for Nike. Two systems were considered, one using phased signals, and another using signal timing known as
12221-464: Was Fort Meade , who started receiving their missiles in December 1953, replacing their 120 mm M1 guns . This site reached initial operational status in March 1954, and went on full round-the-clock combat status on 30 May. The Army considers 30 May to be the "birth date" of the Nike system. On 15 November 1956 the missile was officially renamed as the Nike Ajax , as part of DA Circular 700–22. Over
12342-676: Was Without Attitude Control. Thus it was named the WAC Corporal . The WAC Corporal served as the foundation of Sounding Rocketry in the USA. WAC Corporal was developed in two versions the second of which was much improved. After the war the WAC Corporal was in competition for sounding mission funding with the much larger captured V-2 rocket being tested by the U.S. Army. WAC Corporal was overshadowed at its job of cost-effectively lifting pounds of experiments to altitude, thus it effectively became obsolescent. WAC Corporals were later modified to become
12463-520: Was an American guided surface-to-air missile (SAM) developed by Bell Labs for the United States Army . The world's first operational guided surface-to-air missile, the Nike Ajax was designed to attack conventional bomber aircraft flying at high subsonic speeds and altitudes above 50,000 feet (15 km). Nike entered service in 1954 and was initially deployed within the United States to defend against Soviet bomber attacks, though it
12584-672: Was canceled in January 1963. As Ajax missiles were removed from service, thousands of unused booster rockets were left over from the program, and more when the Hercules was removed from service years later. These proved perfect for all sorts of roles, notably as the boosters for various sounding rockets . These designs often, but not always, included "Nike" in their name. Examples include the Nike-Cajun , Nike-Apache , Nike-Smoke and many others. A complete Nike Ajax system consisted of several radars, computers, missiles, and their launchers. Sites were generally arranged in three major sections,
12705-548: Was created at the California Institute of Technology , where before World War II there was a group of rocket enthusiasts led by Frank Malina , under the aegis of Theodore von Kármán , known amidst the people of the CIT as the "Suicide Squad." The immediate goal of the Suicide Squad was exploring the upper atmosphere which required developing the means of lofting instruments to high altitude and recovering
12826-514: Was fine when the threat was a few dozen enemy ICBMs, but as it became clear that the Soviets were placing almost all of their effort into ICBMs, Zeus looked increasingly unable to deal with the hundreds of targets that would result. Serious technical problems also arose, including electromagnetic pulse and similar effects that blocked radar, questions about the missile's ability to damage enemy warheads, and above all, rapidly rising costs. Development
12947-492: Was fired in a powered flight for the second time on 5 September 2013. Four additional SpaceShipTwos have been ordered and will operate from the new Spaceport America . Commercial flights carrying passengers were expected in 2014, but became cancelled due to the disaster during SS2 PF04 flight . Branson stated, "[w]e are going to learn from what went wrong, discover how we can improve safety and performance and then move forwards together." A major use of sub-orbital vehicles today
13068-581: Was further improved with the introduction of the Missile Master system, which replaced manual plotting with a computer-run system, and then the simpler and smaller Missile Mentor and BIRDIE systems. The Nike batteries were organized in Defense Areas and placed around population centers and strategic locations such as long-range bomber and important military/naval bases, nuclear production facilities and (later) ICBM sites. The Nike sites in
13189-500: Was handed to the newly formed US Air Force in 1948, when that force evolved out of the Army Air Force. At the ranges and speeds being considered, even a supersonic rocket will take enough time to reach the target that the missile needs to lead the bomber in order to properly intercept it. Bell proposed a system using two radars, one tracking the target, and another tracking the missile. An analog computer would calculate
13310-399: Was indeed possible. They concluded that: A supersonic rocket missile should be vertically launched under the thrust of a solid-fuel booster which was then to be dropped; thence, self-propelled by a liquid-fuel motor, the missile should be guided to a predicted intercept point in space and detonated by remote control commands; these commands should be transmitted by radio signals determined by
13431-536: Was later deployed overseas to protect US military bases, and was also sold to various allied militaries. Some examples remained in use until the 1970s. Originally known simply as " Nike ", it gained the " Ajax " as part of a 1956 renaming effort that resulted from the introduction of the similarly named Nike Hercules . It was initially given the identifier SAM-A-7 (Surface-to-air, Army, design 7) as part of an early tri-service identification system, but later changed to MIM-3 in 1962. Technological development during
13552-507: Was launched in August 1952. By the end of the year, three complete ground systems and 1,000 missiles had been delivered to White Sands. The complete system was set up by January 1953, and an underground launch site first fired on 5 June 1953. Crew training was carried out at Fort Bliss with the missiles fired toward White Sands. Service deliveries began that year, and eventually, a total of 350 launch systems and 13,714 missiles were produced over
13673-414: Was launched, and similar tests followed until 28 January 1947, ending the first test series. During one test a missile reached an altitude of 140,000 feet. A second test series followed in September and October 1947, including several improvements in the design in order to address problems with the booster. A further series in 1948, originally planned for 1946, continued to demonstrate problems. Eventually,
13794-540: Was opened to tender, and was picked up by other companies, notably Boeing . This led to a semi-formalized agreement that the Army Air Force and the Ordnance Corps would split development based on whether or not the design "depend[ed] for sustenance primarily on the lift of aerodynamic forces" like GAPA, or "primary on the momentum of the missile" like Nike. As part of the Key West Agreement , GAPA
13915-490: Was originally going to be a slightly larger Nike I, just wide enough to carry the new warhead. But during early development, the decision was made to move to a solid fuel upper stage. This required a larger fuselage and was heavier as well. In order to get the new missile into the air, the booster engine was replaced with a new design using four of the original boosters strapped together. The new missile offered interception altitudes well above 100,000 feet (30 km) and ranges on
14036-515: Was possible, and suggested concentrating on a program of general rocket development instead. The introduction of German jet-powered bombers late in 1944 led to a re-evaluation of this policy, and on 26 January 1945 the Army Chief of Ordnance issued a requirement for a new guided missile system. The request was passed to Bell Labs , then a world leader in radar, radio control, and automated aiming systems (see Hendrik Wade Bode ). Bell accepted
14157-640: Was the German V-2 , the work of the scientists at Peenemünde , on October 3, 1942, which reached an altitude of 53 miles (85 km). Then in the late 1940s the US and USSR concurrently developed missiles all of which were based on the V-2 Rocket, and then much longer range Intercontinental Ballistic Missiles (ICBMs). There are now many countries who possess ICBMs and even more with shorter range Intermediate Range Ballistic Missiles (IRBMs). Sub-orbital tourist flights will initially focus on attaining
14278-653: Was the M-100. Some 6640 M-100 sounding rockets were flown from 1957 to 1990. Other early users of Sounding Rockets were Britain, France and Japan. Great Britain developed the Skylark (rocket) series and the later Skua for the International Geophysical Year . France had begun the design of a Super V-2 but that program had been abandoned in the late 1940s due to the inability of France to manufacture all components necessary. Though development of
14399-540: Was the last nation to launch a new liquid fueled sounding rocket, the T-7. It was first fired from a very primitive launch site, where the "command center" and borrowed power generator were in a grass hut separated from the launcher by a small river. There was no communications equipment- not even a telephone between the command post and the rocket launcher. The T-7 led to the T-7M, T-7A, T-7A-S, T-7A-S2 and T-7/GF-01A. The T-7/ GF-01A
14520-513: Was the system tested at White Sands in 1953 and with its success, on 28 October 1953 ARAACOM directed that most deployments would use this option. The system used a basic building block with four above-ground launching stations over an underground battery with additional missiles. Missiles were raised to the surface on an elevator and then pushed, by hand, along rails to their launchers. Stations normally consisted of four to six of these basic building blocks. The first site to build their Nike I system
14641-772: Was used in 1969 to launch the FSW satellite technology development missions. Thus the I-7 led to the first Chinese satellite, the Dong Fang Hong 1 (The East is Red 1), launched by a DF-1. Vital to the development of Chinese rocketry and the Dong Feng-1 was Qian Xuesen (Tsien Hsue-shen in Wade Guiles transliteration) who with Theodore von Kármán and the California Institute of Technology "Suicide Squad" created
#135864