Misplaced Pages

Sulu Trench

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Oceanic trenches are prominent, long, narrow topographic depressions of the ocean floor . They are typically 50 to 100 kilometers (30 to 60 mi) wide and 3 to 4 km (1.9 to 2.5 mi) below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about 50,000 km (31,000 mi) of oceanic trenches worldwide, mostly around the Pacific Ocean , but also in the eastern Indian Ocean and a few other locations. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench , at a depth of 10,994 m (36,070 ft) below sea level .

#316683

69-844: The Sulu Trench is an oceanic trench in the Pacific Ocean , located west of the islands of Mindanao and Sulu in the Philippines . The trench reaches a depth of about 5,600 metres (18,400 ft), in contrast with the average depth of the South China Sea of about 1,500 metres (4,900 ft). The trench formed when the Sunda Plate (part of the Eurasian Plate ) subducted below the Philippine Mobile Belt . The convergent boundary terminates at

138-763: A destructive boundary ) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction . The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone . These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis , destruction of lithosphere , and deformation . Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types. Plate tectonics

207-737: A volcanic arc and are associated with extensional tectonics and high heat flow, often being home to seafloor spreading centers. These spreading centers are like mid-ocean ridges , though the magma composition of back-arc basins is generally more varied and contains a higher water content than mid-ocean ridge magmas. Back-arc basins are often characterized by thin, hot lithosphere. Opening of back-arc basins may arise from movement of hot asthenosphere into lithosphere, causing extension. Oceanic trenches are narrow topographic lows that mark convergent boundaries or subduction zones. Oceanic trenches average 50 to 100 km (31 to 62 mi) wide and can be several thousand kilometers long. Oceanic trenches form as

276-476: A volcanic arc . Much of the fluid trapped in sediments of the subducting slab returns to the surface at the oceanic trench, producing mud volcanoes and cold seeps . These support unique biomes based on chemotrophic microorganisms. There is concern that plastic debris is accumulating in trenches and threatening these communities. There are approximately 50,000 km (31,000 mi) of convergent plate margins worldwide. These are mostly located around

345-464: A M7.2. This is a list of significant earthquakes related to the Sulu Trench which have a magnitude of 6.4 or bigger. 6°12′N 119°36′E  /  6.20°N 119.60°E  / 6.20; 119.60 This article about a specific oceanic location or ocean current is a stub . You can help Misplaced Pages by expanding it . Oceanic trench Oceanic trenches are a feature of

414-457: A difference in buoyancy. An increase in retrograde trench migration (slab rollback) (2–4 cm/yr) is a result of flattened slabs at the 660-km discontinuity where the slab does not penetrate into the lower mantle. This is the case for the Japan, Java and Izu–Bonin trenches. These flattened slabs are only temporarily arrested in the transition zone. The subsequent displacement into the lower mantle

483-426: A high angle of repose. Over half of all convergent margins are erosive margins. Accretionary margins, such as the southern Peru-Chile, Cascadia, and Aleutians, are associated with moderately to heavily sedimented trenches. As the slab subducts, sediments are "bulldozed" onto the edge of the overriding plate, producing an accretionary wedge or accretionary prism . This builds the overriding plate outwards. Because

552-475: A prominent elongated depression of the sea bottom, was first used by Johnstone in his 1923 textbook An Introduction to Oceanography . During the 1920s and 1930s, Felix Andries Vening Meinesz measured gravity over trenches using a newly developed gravimeter that could measure gravity from aboard a submarine. He proposed the tectogene hypothesis to explain the belts of negative gravity anomalies that were found near island arcs. According to this hypothesis,

621-553: A result of bending of the subducting slab. Depth of oceanic trenches seems to be controlled by age of the oceanic lithosphere being subducted. Sediment fill in oceanic trenches varies and generally depends on abundance of sediment input from surrounding areas. An oceanic trench, the Mariana Trench , is the deepest point of the ocean at a depth of approximately 11,000 m (36,089 ft). Earthquakes are common along convergent boundaries. A region of high earthquake activity,

690-528: A zone of continental collision. Features analogous to trenches are associated with collision zones . One such feature is the peripheral foreland basin , a sediment-filled foredeep . Examples of peripheral foreland basins include the floodplains of the Ganges River and the Tigris-Euphrates river system . Trenches were not clearly defined until the late 1940s and 1950s. The bathymetry of

759-476: Is caused by slab pull forces, or the destabilization of the slab from warming and broadening due to thermal diffusion. Slabs that penetrate directly into the lower mantle result in slower slab rollback rates (~1–3 cm/yr) such as the Mariana arc, Tonga arcs. As sediments are subducted at the bottom of trenches, much of their fluid content is expelled and moves back along the subduction décollement to emerge on

SECTION 10

#1732783591317

828-422: Is complex, with many thrust ridges. These compete with canyon formation by rivers draining into the trench. Inner trench slopes of erosive margins rarely show thrust ridges. Accretionary prisms grow in two ways. The first is by frontal accretion, in which sediments are scraped off the downgoing plate and emplaced at the front of the accretionary prism. As the accretionary wedge grows, older sediments further from

897-416: Is determined by the angle of repose of the overriding plate edge. This reflects frequent earthquakes along the trench that prevent oversteepening of the inner slope. As the subducting plate approaches the trench, it bends slightly upwards before beginning its plunge into the depths. As a result, the outer trench slope is bounded by an outer trench high . This is subtle, often only tens of meters high, and

966-405: Is driven by convection cells in the mantle. Convection cells are the result of heat generated by the radioactive decay of elements in the mantle escaping to the surface and the return of cool materials from the surface to the mantle. These convection cells bring hot mantle material to the surface along spreading centers creating new crust. As this new crust is pushed away from the spreading center by

1035-489: Is explained by a change in the density of the subducting plate, such as the arrival of buoyant lithosphere (a continent, arc, ridge, or plateau), a change in the subduction dynamics, or a change in the plate kinematics. The age of the subducting plates does not have any effect on slab rollback. Nearby continental collisions have an effect on slab rollback. Continental collisions induce mantle flow and extrusion of mantle material, which causes stretching and arc-trench rollback. In

1104-422: Is fully exposed on the ocean bottom. The central Chile segment of the trench is moderately sedimented, with sediments onlapping onto pelagic sediments or ocean basement of the subducting slab, but the trench morphology is still clearly discernible. The southern Chile segment of the trench is fully sedimented, to the point where the outer rise and slope are no longer discernible. Other fully sedimented trenches include

1173-444: Is likely that the plate may break along the boundary of continental and oceanic crust. Seismic tomography reveals pieces of lithosphere that have broken off during convergence. Subduction zones are areas where one lithospheric plate slides beneath another at a convergent boundary due to lithospheric density differences. These plates dip at an average of 45° but can vary. Subduction zones are often marked by an abundance of earthquakes,

1242-412: Is most characteristic of oceanic volcanic arcs, though this is also found in continental volcanic arcs above rapid subduction (>7 cm/year). This series is relatively low in potassium . The more oxidized calc-alkaline series , which is moderately enriched in potassium and incompatible elements, is characteristic of continental volcanic arcs. The alkaline magma series (highly enriched in potassium)

1311-484: Is recorded as tectonic mélanges and duplex structures. Frequent megathrust earthquakes modify the inner slope of the trench by triggering massive landslides. These leave semicircular landslide scarps with slopes of up to 20 degrees on the headwalls and sidewalls. Subduction of seamounts and aseismic ridges into the trench may increase aseismic creep and reduce the severity of earthquakes. Contrariwise, subduction of large amounts of sediments may allow ruptures along

1380-415: Is scraped from the subducting lithosphere and emplaced against the overriding lithosphere. These sediments include igneous crust, turbidite sediments, and pelagic sediments. Imbricate thrust faulting along a basal decollement surface occurs in accretionary wedges as forces continue to compress and fault these newly added sediments. The continued faulting of the accretionary wedge leads to overall thickening of

1449-427: Is sometimes present in the deeper continental interior. The shoshonite series, which is extremely high in potassium, is rare but sometimes is found in volcanic arcs. The andesite member of each series is typically most abundant, and the transition from basaltic volcanism of the deep Pacific basin to andesitic volcanism in the surrounding volcanic arcs has been called the andesite line. Back-arc basins form behind

SECTION 20

#1732783591317

1518-412: Is typically located a few tens of kilometers from the trench axis. On the outer slope itself, where the plate begins to bend downwards into the trench, the upper part of the subducting slab is broken by bending faults that give the outer trench slope a horst and graben topography. The formation of these bending faults is suppressed where oceanic ridges or large seamounts are subducting into the trench, but

1587-515: Is what generates slab rollback. When the deep slab section obstructs the down-going motion of the shallow slab section, slab rollback occurs. The subducting slab undergoes backward sinking due to the negative buoyancy forces causing a retrogradation of the trench hinge along the surface. Upwelling of the mantle around the slab can create favorable conditions for the formation of a back-arc basin. Seismic tomography provides evidence for slab rollback. Results demonstrate high temperature anomalies within

1656-596: The Negros Trench in the east. The Sulu Trench is not associated with frequent earthquakes , but hosts volcanoes south of the trench, such as Mount Malindang . The Sulu Trench was formed from subduction of the Eurasian Plate underneath the Philippine sea plate , which initiated during the Early Miocene (23.03-20.44 Million years ago). Historically, the trench was the site of a collision zone with

1725-502: The Wadati–Benioff zone , generally dips 45° and marks the subducting plate. Earthquakes will occur to a depth of 670 km (416 mi) along the Wadati-Benioff margin. Both compressional and extensional forces act along convergent boundaries. On the inner walls of trenches, compressional faulting or reverse faulting occurs due to the relative motion of the two plates. Reverse faulting scrapes off ocean sediment and leads to

1794-444: The shear stresses at the base of the overriding plate. As slab rollback velocities increase, circular mantle flow velocities also increase, accelerating extension rates. Extension rates are altered when the slab interacts with the discontinuities within the mantle at 410 km and 660 km depth. Slabs can either penetrate directly into the lower mantle , or can be retarded due to the phase transition at 660 km depth creating

1863-572: The 1960 descent of the Bathyscaphe Trieste to the bottom of the Challenger Deep. Following Robert S. Dietz ' and Harry Hess ' promulgation of the seafloor spreading hypothesis in the early 1960s and the plate tectonic revolution in the late 1960s, the oceanic trench became an important concept in plate tectonic theory. Oceanic trenches are 50 to 100 kilometers (30 to 60 mi) wide and have an asymmetric V-shape, with

1932-470: The Aleutian trench. In addition to sedimentation from rivers draining into a trench, sedimentation also takes place from landslides on the tectonically steepened inner slope, often driven by megathrust earthquakes . The Reloca Slide of the central Chile trench is an example of this process. Convergent margins are classified as erosive or accretionary, and this has a strong influence on the morphology of

2001-626: The Cascadia subduction zone. Sedimentation is largely controlled by whether the trench is near a continental sediment source. The range of sedimentation is well illustrated by the Chilean trench. The north Chile portion of the trench, which lies along the Atacama Desert with its very slow rate of weathering, is sediment-starved, with from 20 to a few hundred meters of sediments on the trench floor. The tectonic morphology of this trench segment

2070-534: The Cayman Trough, which is a pull-apart basin within a transform fault zone, is not an oceanic trench. Trenches, along with volcanic arcs and Wadati–Benioff zones (zones of earthquakes under a volcanic arc) are diagnostic of convergent plate boundaries and their deeper manifestations, subduction zones . Here, two tectonic plates are drifting into each other at a rate of a few millimeters to over 10 centimeters (4 in) per year. At least one of

2139-594: The Earth's distinctive plate tectonics . They mark the locations of convergent plate boundaries , along which lithospheric plates move towards each other at rates that vary from a few millimeters to over ten centimeters per year. Oceanic lithosphere moves into trenches at a global rate of about 3 km (1.2 sq mi) per year. A trench marks the position at which the flexed, subducting slab begins to descend beneath another lithospheric slab. Trenches are generally parallel to and about 200 km (120 mi) from

Sulu Trench - Misplaced Pages Continue

2208-412: The Earth. The trench asymmetry reflects the different physical mechanisms that determine the inner and outer slope angle. The outer slope angle of the trench is determined by the bending radius of the subducting slab, as determined by its elastic thickness. Since oceanic lithosphere thickens with age, the outer slope angle is ultimately determined by the age of the subducting slab. The inner slope angle

2277-596: The Makran Trough, where sediments are up to 7.5 kilometers (4.7 mi) thick; the Cascadia subduction zone, which is completed buried by 3 to 4 kilometers (1.9 to 2.5 mi) of sediments; and the northernmost Sumatra subduction zone, which is buried under 6 kilometers (3.7 mi) of sediments. Sediments are sometimes transported along the axis of an oceanic trench. The central Chile trench experiences transport of sediments from source fans along an axial channel. Similar transport of sediments has been documented in

2346-744: The Pacific Ocean, but are also found in the eastern Indian Ocean , with a few shorter convergent margin segments in other parts of the Indian Ocean, in the Atlantic Ocean, and in the Mediterranean. They are found on the oceanward side of island arcs and Andean-type orogens . Globally, there are over 50 major ocean trenches covering an area of 1.9 million km or about 0.5% of the oceans. Trenches are geomorphologically distinct from troughs . Troughs are elongated depressions of

2415-730: The Palawan plate, which formed the Philippine Trench 8–9 million years ago. The trench is located southwest of the Visayas and north of the Sulu Archipelago . It extends northeasterly in the Sulu Sea , from 6°12′N 119°36′E  /  6.20°N 119.60°E  / 6.20; 119.60 to 7°12′N 121°24′E  /  7.20°N 121.40°E  / 7.20; 121.40 . The rate of subduction in

2484-494: The Sulu Trench is approximately 8 cm (3.1 in) per year. Although there are vast areas of subduction zones, some authors have considered this region to have low seismic activity . There have been several earthquakes with a magnitude ≥6.4 in the region, with one of the recent ones in 1978, hitting the trench with a hypocenter depth of 24 km (15 mi). Areas adjacent to the subduction zones have experienced large seismic activity. In 1942, Zamboanga Peninsula experienced

2553-517: The Tethyan suture zone (the Alps – Zagros – Himalaya mountain belt). The oceanic crust contains hydrated minerals such as the amphibole and mica groups. During subduction, oceanic lithosphere is heated and metamorphosed, causing breakdown of these hydrous minerals, which releases water into the asthenosphere. The release of water into the asthenosphere leads to partial melting. Partial melting allows

2622-479: The area of the Southeast Pacific, there have been several rollback events resulting in the formation of numerous back-arc basins. Interactions with the mantle discontinuities play a significant role in slab rollback. Stagnation at the 660-km discontinuity causes retrograde slab motion due to the suction forces acting at the surface. Slab rollback induces mantle return flow, which causes extension from

2691-457: The asthenosphere and volcanism. Both dehydration and partial melting occur along the 1,000 °C (1,830 °F) isotherm, generally at depths of 65 to 130 km (40 to 81 mi). Some lithospheric plates consist of both continental and oceanic lithosphere . In some instances, initial convergence with another plate will destroy oceanic lithosphere, leading to convergence of two continental plates. Neither continental plate will subduct. It

2760-460: The belts were zones of downwelling of light crustal rock arising from subcrustal convection currents. The tectogene hypothesis was further developed by Griggs in 1939, using an analogue model based on a pair of rotating drums. Harry Hammond Hess substantially revised the theory based on his geological analysis. World War II in the Pacific led to great improvements of bathymetry, particularly in

2829-497: The bending faults cut right across smaller seamounts. Where the subducting slab is only thinly veneered with sediments, the outer slope will often show seafloor spreading ridges oblique to the horst and graben ridges. Trench morphology is strongly modified by the amount of sedimentation in the trench. This varies from practically no sedimentation, as in the Tonga-Kermadec trench, to completely filled with sediments, as with

Sulu Trench - Misplaced Pages Continue

2898-519: The dense oceanic lithosphere subducts beneath the less dense continental lithosphere. An accretionary wedge forms on the continental crust as deep-sea sediments and oceanic crust are scraped from the oceanic plate. Volcanic arcs form on continental lithosphere as the result of partial melting due to dehydration of the hydrous minerals of the subducting slab. Some lithospheric plates consist of both continental and oceanic crust. Subduction initiates as oceanic lithosphere slides beneath continental crust. As

2967-426: The existence of back-arc basins . Forces perpendicular to the slab (the portion of the subducting plate within the mantle) are responsible for steepening of the slab and, ultimately, the movement of the hinge and trench at the surface. These forces arise from the negative buoyancy of the slab with respect to the mantle modified by the geometry of the slab itself. The extension in the overriding plate, in response to

3036-485: The formation of an accretionary wedge. Reverse faulting can lead to megathrust earthquakes . Tensional or normal faulting occurs on the outer wall of the trench, likely due to bending of the downgoing slab. A megathrust earthquake can produce sudden vertical displacement of a large area of ocean floor. This in turn generates a tsunami . Some of the deadliest natural disasters have occurred due to convergent boundary processes. The 2004 Indian Ocean earthquake and tsunami

3105-420: The formation of newer crust, it cools, thins, and becomes denser. Subduction begins when this dense crust converges with a less dense crust. The force of gravity helps drive the subducting slab into the mantle. As the relatively cool subducting slab sinks deeper into the mantle, it is heated, causing hydrous minerals to break down. This releases water into the hotter asthenosphere, which leads to partial melting of

3174-690: The fundamental plate-tectonic structure is still an oceanic trench. Some troughs look similar to oceanic trenches but possess other tectonic structures. One example is the Lesser Antilles Trough, which is the forearc basin of the Lesser Antilles subduction zone . Also not a trench is the New Caledonia trough, which is an extensional sedimentary basin related to the Tonga-Kermadec subduction zone . Additionally,

3243-462: The inner slope as mud volcanoes and cold seeps . Methane clathrates and gas hydrates also accumulate in the inner slope, and there is concern that their breakdown could contribute to global warming . The fluids released at mud volcanoes and cold seeps are rich in methane and hydrogen sulfide , providing chemical energy for chemotrophic microorganisms that form the base of a unique trench biome . Cold seep communities have been identified in

3312-431: The inner slope of the trench. Erosive margins, such as the northern Peru-Chile, Tonga-Kermadec, and Mariana trenches, correspond to sediment-starved trenches. The subducting slab erodes material from the lower part of the overriding slab, reducing its volume. The edge of the slab experiences subsidence and steepening, with normal faulting. The slope is underlain by relative strong igneous and metamorphic rock, which maintains

3381-451: The inner trench slopes of the western Pacific (especially Japan ), South America, Barbados, the Mediterranean, Makran, and the Sunda trench. These are found at depths as great as 6,000 meters (20,000 ft). The genome of the extremophile Deinococcus from Challenger Deep has sequenced for its ecological insights and potential industrial uses. Because trenches are the lowest points in

3450-411: The mantle suggesting subducted material is present in the mantle. Ophiolites are viewed as evidence for such mechanisms as high pressure and temperature rocks are rapidly brought to the surface through the processes of slab rollback, which provides space for the exhumation of ophiolites . Slab rollback is not always a continuous process suggesting an episodic nature. The episodic nature of the rollback

3519-449: The ocean floor, there is concern that plastic debris may accumulate in trenches and endanger the fragile trench biomes. Recent measurements, where the salinity and temperature of the water was measured throughout the dive, have uncertainties of about 15 m (49 ft). Older measurements may be off by hundreds of meters. (*) The five deepest trenches in the world Convergent boundary A convergent boundary (also known as

SECTION 50

#1732783591317

3588-530: The ocean was poorly known prior to the Challenger expedition of 1872–1876, which took 492 soundings of the deep ocean. At station #225, the expedition discovered Challenger Deep , now known to be the southern end of the Mariana Trench . The laying of transatlantic telegraph cables on the seafloor between the continents during the late 19th and early 20th centuries provided further motivation for improved bathymetry. The term trench , in its modern sense of

3657-417: The oceanic lithosphere subducts to greater depths, the attached continental crust is pulled closer to the subduction zone. Once the continental lithosphere reaches the subduction zone, subduction processes are altered, since continental lithosphere is more buoyant and resists subduction beneath other continental lithosphere. A small portion of the continental crust may be subducted until the slab breaks, allowing

3726-552: The oceanic lithosphere to continue subducting, hot asthenosphere to rise and fill the void, and the continental lithosphere to rebound. Evidence of this continental rebound includes ultrahigh pressure metamorphic rocks , which form at depths of 90 to 125 km (56 to 78 mi), that are exposed at the surface. Seismic records have been used to map the torn slabs beneath the Caucasus continental – continental convergence zone, and seismic tomography has mapped detached slabs beneath

3795-415: The overriding plate exerts a force against the subducting plate (FTS). The slab pull force (FSP) is caused by the negative buoyancy of the plate driving the plate to greater depths. The resisting force from the surrounding mantle opposes the slab pull forces. Interactions with the 660-km discontinuity cause a deflection due to the buoyancy at the phase transition (F660). The unique interplay of these forces

3864-512: The plates is oceanic lithosphere , which plunges under the other plate to be recycled in the Earth's mantle . Trenches are related to, but distinct from, continental collision zones, such as the Himalayas . Unlike in trenches, in continental collision zones continental crust enters a subduction zone. When buoyant continental crust enters a trench, subduction comes to a halt and the area becomes

3933-399: The result of internal deformation of the plate, convergence with the opposing plate, and bending at the oceanic trench. Earthquakes have been detected to a depth of 670 km (416 mi). The relatively cold and dense subducting plates are pulled into the mantle and help drive mantle convection. In collisions between two oceanic plates, the cooler, denser oceanic lithosphere sinks beneath

4002-461: The rise of more buoyant, hot material and can lead to volcanism at the surface and emplacement of plutons in the subsurface. These processes which generate magma are not entirely understood. Where these magmas reach the surface they create volcanic arcs. Volcanic arcs can form as island arc chains or as arcs on continental crust. Three magma series of volcanic rocks are found in association with arcs. The chemically reduced tholeiitic magma series

4071-525: The sea floor with steep sides and flat bottoms, while trenches are characterized by a V-shaped profile. Trenches that are partially infilled are sometimes described as troughs, for example the Makran Trough. Some trenches are completely buried and lack bathymetric expression as in the Cascadia subduction zone , which is completely filled with sediments. Despite their appearance, in these instances

4140-416: The sediments lack strength, their angle of repose is gentler than the rock making up the inner slope of erosive margin trenches. The inner slope is underlain by imbricated thrust sheets of sediments. The inner slope topography is roughened by localized mass wasting . Cascadia has practically no bathymetric expression of the outer rise and trench, due to complete sediment filling, but the inner trench slope

4209-444: The steeper slope (8 to 20 degrees) on the inner (overriding) side of the trench and the gentler slope (around 5 degrees) on the outer (subducting) side of the trench. The bottom of the trench marks the boundary between the subducting and overriding plates, known as the basal plate boundary shear or the subduction décollement . The depth of the trench depends on the starting depth of the oceanic lithosphere as it begins its plunge into

SECTION 60

#1732783591317

4278-477: The subducting oceanic lithosphere is much younger, the depth of the Peru-Chile trench is around 7 to 8 kilometers (4.3 to 5.0 mi). Though narrow, oceanic trenches are remarkably long and continuous, forming the largest linear depressions on earth. An individual trench can be thousands of kilometers long. Most trenches are convex towards the subducting slab, which is attributed to the spherical geometry of

4347-416: The subduction décollement to propagate for great distances to produce megathrust earthquakes. Trenches seem positionally stable over time, but scientists believe that some trenches—particularly those associated with subduction zones where two oceanic plates converge—move backward into the subducting plate. This is called trench rollback or hinge retreat (also hinge rollback ) and is one explanation for

4416-399: The subsequent subhorizontal mantle flow from the displacement of the slab, can result in formation of a back-arc basin. Several forces are involved in the process of slab rollback. Two forces acting against each other at the interface of the two subducting plates exert forces against one another. The subducting plate exerts a bending force (FPB) that supplies pressure during subduction, while

4485-455: The trench become increasingly lithified , and faults and other structural features are steepened by rotation towards the trench. The other mechanism for accretionary prism growth is underplating (also known as basal accretion ) of subducted sediments, together with some oceanic crust , along the shallow parts of the subduction decollement. The Franciscan Group of California is interpreted as an ancient accretionary prism in which underplating

4554-513: The trench, the angle at which the slab plunges, and the amount of sedimentation in the trench. Both starting depth and subduction angle are greater for older oceanic lithosphere, which is reflected in the deep trenches of the western Pacific. Here the bottoms of the Marianas and the Tonga–Kermadec trenches are up to 10–11 kilometers (6.2–6.8 mi) below sea level. In the eastern Pacific, where

4623-447: The warmer, less dense oceanic lithosphere. As the slab sinks deeper into the mantle, it releases water from dehydration of hydrous minerals in the oceanic crust. This water reduces the melting temperature of rocks in the asthenosphere and causes partial melting. Partial melt will travel up through the asthenosphere, eventually, reach the surface, and form volcanic island arcs . When oceanic lithosphere and continental lithosphere collide,

4692-429: The western Pacific. In light of these new measurements, the linear nature of the deeps became clear. There was a rapid growth of deep sea research efforts, especially the widespread use of echosounders in the 1950s and 1960s. These efforts confirmed the morphological utility of the term "trench." Important trenches were identified, sampled, and mapped via sonar. The early phase of trench exploration reached its peak with

4761-552: Was triggered by a megathrust earthquake along the convergent boundary of the Indian plate and Burma microplate and killed over 200,000 people. The 2011 tsunami off the coast of Japan , which caused 16,000 deaths and did US$ 360 billion in damage, was caused by a magnitude 9 megathrust earthquake along the convergent boundary of the Eurasian plate and Pacific plate. Accretionary wedges (also called accretionary prisms ) form as sediment

#316683