Misplaced Pages

Ponce Cement

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#280719

89-606: Ponce Cement, Inc. was a cement and limestone manufacturer in Ponce, Puerto Rico . The company was located at the intersection of PR-123 and PR-500 , in Barrio Magueyes . It was founded in 1941 by Antonio Ferré Bacallao, a Puerto Rican industrialist of Cuban origin. In 1963, the company became the first Puerto Rican company to go public and be listed in the New York Stock Exchange . Ponce Cement

178-592: A Portland stone façade to complete its stripped Classical design. After the Second World War (1939–1945), the bombed out centres of many English towns and cities, such as Plymouth , Bristol , Coventry and London were reconstructed using vast facades of Portland stone. Many of the buildings surrounding the flagship Parkinson Building at the University of Leeds are clad in Portland stone, including

267-405: A blend containing ground limestone (where a suffix L is present in the class names). White portland cement or white ordinary portland cement (WOPC) is similar to ordinary gray portland cement in all respects, except for its high degree of whiteness. Obtaining this colour requires high purity raw materials (low Fe 2 O 3 content), and some modification to the method of manufacture, among others

356-534: A cement of the kind invented 7 years later by the French engineer Louis Vicat . Vicat's cement is an artificial hydraulic lime , and is considered the "principal forerunner" of portland cement. The name portland cement is recorded in a directory published in 1823 being associated with a William Lockwood and possibly others. In his 1824 cement patent, Joseph Aspdin called his invention "portland cement" because of its resemblance to Portland stone . Aspdin's cement

445-465: A construction material, concrete can be cast in almost any shape desired, and once hardened, can become a structural (load bearing) element. Concrete can be used in the construction of structural elements like panels, beams, and street furniture , or may be cast- in situ for superstructures like roads and dams. These may be supplied with concrete mixed on site, or may be provided with ' ready-mixed ' concrete made at permanent mixing sites. Portland cement

534-400: A few weeks and this causes strength growth to stop. Five types of portland cements exist, with variations of the first three according to ASTM C150. Type I portland cement is known as common or general-purpose cement. It is generally assumed unless another type is specified. It is commonly used for general construction, especially when making precast, and precast-prestressed concrete that

623-487: A fusion temperature, which is about 1,450 °C (2,640 °F) for modern cements, to sinter the materials into clinker. The materials in cement clinker are alite, belite, tricalcium aluminate , and tetracalcium alumino ferrite. The aluminium, iron, and magnesium oxides are present as a flux allowing the calcium silicates to form at a lower temperature, and contribute little to the strength. For special cements, such as low heat (LH) and sulphate resistant (SR) types, it

712-514: A given project it is best to use cement from a single batch. Bags of cement routinely have health and safety warnings printed on them, because not only is cement highly alkaline , but the setting process is also exothermic . As a result, wet cement is strongly caustic and can easily cause severe skin burns if not promptly washed off with water. Similarly, dry cement powder in contact with mucous membranes can cause severe eye or respiratory irritation. The reaction of cement dust with moisture in

801-405: A higher kiln temperature required to sinter the clinker in the absence of ferric oxides acting as a flux in normal clinker. As Fe 2 O 3 contributes to decrease the melting point of the clinker (normally 1450 °C), the white cement requires a higher sintering temperature (around 1600 °C). Because of this, it is somewhat more expensive than the grey product. The main requirement is to have

890-527: A low iron content which should be less than 0.5 wt.% expressed as Fe 2 O 3 for white cement, and less than 0.9 wt.% for off-white cement. It also helps to have the iron oxide as ferrous oxide (FeO) which is obtained via slightly reducing conditions in the kiln, i.e., operating with zero excess oxygen at the kiln exit. This gives the clinker and cement a green tinge. Other metallic oxides such as Cr 2 O 3 (green), MnO (pink), TiO 2 (white), etc., in trace content, can also give colour tinges, so for

979-493: A machine. Slots are cut into the top, bottom, sides and middle of the stone. A flat steel pillow is inserted into the middle cut and slowly inflated with water. The stones are gently broken off at the back without placing any stress on the resulting blocks. This method of extraction is significantly more expensive than blasting, but results in a higher yield thereby saving valuable reserves for future generations. The environmental benefits are substantial as mining significantly reduces

SECTION 10

#1732779503281

1068-633: A mild heat. The European norm EN 197-1 defines five classes of common cement that comprise portland cement as a main constituent. These classes differ from the ASTM classes. * Constituents that are permitted in portland-composite cements are artificial pozzolans (blast furnace slag (in fact a latent hydraulic binder), silica fume, and fly ashes), or natural pozzolans (siliceous or siliceous aluminous materials such as volcanic ash glasses, calcined clays and shale). The Canadian standards describe six main classes of cement, four of which can also be supplied as

1157-480: A patent for it in 1824. His son William Aspdin is regarded as the inventor of "modern" portland cement due to his developments in the 1840s. The low cost and widespread availability of the limestone, shales , and other naturally occurring materials used in portland cement make it a relatively cheap building material. Its most common use is in the production of concrete, a composite material consisting of aggregate (gravel and sand), cement, and water. Portland cement

1246-659: A popularity amongst masons and architects that has endured ever since. The East side of Buckingham Palace , the official London residence of King Charles III , including the balcony, was faced with Portland stone, first in 1854 and again in 1913. The Victoria Memorial (unveiled 1911) is also made of it. Inigo Jones (1573–1652) used Portland stone to build the Banqueting Hall in Whitehall in 1620. Sir Christopher Wren used nearly one million cubic feet to rebuild St. Paul's Cathedral and many other minor churches after

1335-412: A typical concrete sets in about 6 hours and develops a compressive strength of 8 MPa in 24 hours. The strength rises to 15 MPa at 3 days, 23 MPa at 1 week, 35 MPa at 4 weeks, and 41 MPa at 3 months. In principle, the strength continues to rise slowly as long as water is available for continued hydration, but concrete is usually allowed to dry out after

1424-440: A very low (C 3 A) composition which accounts for its high sulphate resistance. The maximum content of (C 3 A) allowed is 5% for type V portland cement. Another limitation is that the (C 4 AF) + 2(C 3 A) composition cannot exceed 20%. This type is used in concrete to be exposed to alkali soil and ground water sulphates which react with (C 3 A) causing disruptive expansion. It is unavailable in many places, although its use

1513-455: Is Rufus Castle at Church Ope Cove, Portland. The original structure was probably built around 1080, rebuilt around 1259 and rebuilt yet again around 1450, which is the likely date of the walls seen today. The first known Portland stone quarries were situated on the northeastern coast of the Isle, close to Rufus Castle, where huge landslips made the stone more easily accessible, and the proximity of

1602-543: Is immediately dangerous to life and health . Portland cement manufacture can cause environmental impacts at all stages of the process. These include emissions of airborne pollution in the form of dust; gases; noise and vibration when operating machinery and during blasting in quarries; consumption of large quantities of fuel during manufacture; release of CO 2 from the raw materials during manufacture, and damage to countryside from quarrying. Equipment to reduce dust emissions during quarrying and manufacture of cement

1691-612: Is abundant in the region. After founding the Puerto Rico Iron Works , and the El Dia newspaper, Empresas Ferré entered the construction business with Ponce Cement, Inc., and subsequently with Puerto Rican Cement, Inc. Over the 1940s, the company enlarged and Luis A. Ferré became its chief engineer. By 1960, the company had become the leading cement supplier on the island, much of it the result of increasing new highway and housing construction projects spreading throughout

1780-404: Is added to the clinker, and the mixture is finely ground to form the finished cement powder. This is achieved in a cement mill . The grinding process is controlled to obtain a powder with a broad particle size range , in which typically 15% by mass consists of particles below 5 μm diameter, and 5% of particles above 45 μm. The measure of fineness usually used is the ' specific surface area ', which

1869-755: Is also built with Portland stone, as are the public buildings in Cardiff's civic centre. Architect Charles Holden significantly used the stone in his major commissions of the 1920s and 1930s, including Senate House and 55 Broadway , the home of the London Underground . The 1929 steel framed building (one of the first erected in the United Kingdom) of the London School of Hygiene & Tropical Medicine , based in Keppel Street, has

SECTION 20

#1732779503281

1958-555: Is also exported to many countries, being used for example at the United Nations headquarters in New York City. Portland stone formed in a marine environment, on the floor of a shallow, warm, sub-tropical sea probably near land (as evidenced by fossilised driftwood, which is not uncommon). When seawater is warmed by the sun, its capacity to hold dissolved gas is reduced; consequently, dissolved carbon dioxide (CO 2 )

2047-409: Is also used in mortars (with sand and water only), for plasters and screeds , and in grouts (cement/water mixes squeezed into gaps to consolidate foundations, road-beds, etc.). When water is mixed with portland cement, the product sets in a few hours and hardens over a period of weeks. These processes can vary widely, depending upon the mix used and the conditions of curing of the product, but

2136-467: Is also worth noting that stone tends to split much more easily parallel to bedding planes (called graining) than perpendicular to them (called cutting). In 1999, Italian stone cutting equipment, originally designed for use in Tuscany 's marble quarries was imported by Albion Stone and applied to the extraction of Portland stone. This new technology eliminated the need for blasting, significantly improved

2225-457: Is common in the western United States and Canada. As with type IV, type V portland cement has mainly been supplanted by the use of ordinary cement with added ground granulated blast furnace slag or tertiary blended cements containing slag and fly ash. Types Ia , IIa , and IIIa have the same composition as types I, II, and III. The only difference is that in Ia, IIa, and IIIa, an air-entraining agent

2314-429: Is delivered to end users either in bags, or as bulk powder blown from a pressure vehicle into the customer's silo. In industrial countries, 80% or more of cement is delivered in bulk. Cement sets when mixed with water by way of a complex series of chemical reactions still only partly understood. The different constituents slowly crystallise, and the interlocking of their crystals gives cement its strength. Carbon dioxide

2403-411: Is generally known for its low heat of hydration. Its typical compound composition is: 28% (C 3 S), 49% (C 2 S), 4% (C 3 A), 12% (C 4 AF), 1.8% MgO, 1.9% (SO 3 ), 0.9% ignition loss, and 0.8% free CaO. The percentages of (C 2 S) and (C 4 AF) are relatively high and (C 3 S) and (C 3 A) are relatively low. A limitation on this type is that the maximum percentage of (C 3 A) is seven, and

2492-516: Is generally not stocked by manufacturers, but some might consider a large special order. This type of cement has not been made for many years, because portland-pozzolan cements and ground granulated blast furnace slag addition offer a cheaper and more reliable alternative. Type V is used where sulphate resistance is important. Its typical compound composition is: 38% (C 3 S), 43% (C 2 S), 4% (C 3 A), 9% (C 4 AF), 1.9% MgO, 1.8% (SO 3 ), 0.9% ignition loss, and 0.8% free CaO. This cement has

2581-418: Is ground into the mix. The air-entrainment must meet the minimum and maximum optional specification found in the ASTM manual. These types are only available in the eastern United States and Canada, only on a limited basis. They are a poor approach to air-entrainment which improves resistance to freezing under low temperatures. Types II(MH) and II(MH)a have a similar composition as types II and IIa, but with

2670-452: Is heated to high temperature. The key chemical reaction distinguishing portland cement from other hydraulic limes occurs at these high temperatures (>1,300 °C (2,370 °F)) as belite (Ca 2 SiO 4 ) combines with calcium oxide (CaO) to form alite (Ca 3 SiO 5 ). Portland cement clinker is made by heating, in a cement kiln , a mixture of raw materials to a calcining temperature of above 600 °C (1,112 °F) and then

2759-478: Is in contact with soils and ground water, especially in the western United States due to the high sulphur content of the soils. Because of similar price to that of type I, type II is much used as a general purpose cement, and the majority of portland cement sold in North America meets this specification. Note: Cement meeting (among others) the specifications for types I and II has become commonly available on

Ponce Cement - Misplaced Pages Continue

2848-425: Is necessary to limit the amount of tricalcium aluminate (3 CaO·Al 2 O 3 ) formed. The major raw material for the clinker-making is usually limestone ( CaCO 3 ) mixed with a second material containing clay as source of alumino-silicate. Normally, an impure limestone which contains clay or SiO 2 is used. The CaCO 3 content of these limestones can be as low as 80%. Secondary raw materials (materials in

2937-473: Is not to be in contact with soils or ground water. The typical compound compositions of this type are: 55% (C 3 S), 19% (C 2 S), 10% (C 3 A), 7% (C 4 AF), 2.8% MgO, 2.9% (SO 3 ), 1.0% ignition loss , and 1.0% free CaO (utilizing cement chemist notation ). A limitation on the composition is that the (C 3 A) shall not exceed 15%. Type II provides moderate sulphate resistance, and gives off less heat during hydration. This type of cement costs about

3026-563: Is now a subsidiary. The plant continues to operate at the same location, and continues to sell its products to the Puerto Rico market, but with the change in ownership, the company is no longer named Ponce Cement, Inc. ; it is now Cemex, Puerto Rico . The new owners did keep the Cemento Ponce product label. The municipality of Ponce was the perfect place to establish a cement plant, as the type of soil needed for cement production

3115-621: Is privately owned by Portland Stone Firms. Open cast quarrying provides quicker extraction of raw block dimension stone whilst maintaining its integrity. The majority of buildings in London today use Portland which has been quarried using the same methods over the last 60 years. Broadcroft Quarry is located on the eastern side of the island and is a part of the open cast quarries used for St Paul's Cathedral. Privately owned by Portland Stone Firms Limited there are over 20 years of reserves left and still being actively quarried. The coastal strip toward

3204-461: Is released into the atmosphere as a gas. Calcium and bicarbonate ions within the water are then able to combine, to form calcium carbonate (CaCO 3 ) as a precipitate. The process of limescale build up in a kettle in hard-water areas is similar. Calcium carbonate is the principal constituent of most limestones. Billions of minute crystals of precipitated calcium carbonate (called calcite ) accumulated forming lime mud (called micrite ) which covered

3293-456: Is similar to the way in which a snowball grows in size as it is rolled around in the snow. Over time, countless billions of these balls, known as " ooids " or "ooliths" (from the Greek for "egg-shaped" or "egg-stone"), became partially cemented together (or lithified) by more calcite, to form the oolitic limestone that is called Portland stone. The degree of cementation in Portland stone is such that

3382-423: Is slowly absorbed to convert the portlandite (Ca(OH) 2 ) into insoluble calcium carbonate . After the initial setting, immersion in warm water will speed up setting. Gypsum is added as an inhibitor to prevent flash (or quick) setting. The most common use for portland cement is in the production of concrete. Concrete is a composite material consisting of aggregate ( gravel and sand ), cement, and water. As

3471-406: Is that the six-month strength of type III is the same or slightly less than that of types I and II. Therefore, the long-term strength is sacrificed. It is usually used for precast concrete manufacture, where high one-day strength allows fast turnover of molds. It may also be used in emergency construction and repairs, and construction of machine bases and gate installations. Type IV portland cement

3560-476: Is the most common type of cement in general use around the world as a basic ingredient of concrete , mortar , stucco , and non-specialty grout . It was developed from other types of hydraulic lime in England in the early 19th century by Joseph Aspdin , and is usually made from limestone . It is a fine powder , produced by heating limestone and clay minerals in a kiln to form clinker , and then grinding

3649-522: Is the total particle surface area of a unit mass of cement. The rate of initial reaction (up to 24 hours) of the cement on addition of water is directly proportional to the specific surface area. Typical values are 320–380 m ·kg for general purpose cements, and 450–650 m ·kg for 'rapid hardening' cements. The cement is conveyed by belt or powder pump to a silo for storage. Cement plants normally have sufficient silo space for one to 20 weeks of production, depending upon local demand cycles. The cement

Ponce Cement - Misplaced Pages Continue

3738-440: Is widely used, and equipment to trap and separate exhaust gases are coming into increased use. Environmental protection also includes the re-integration of quarries into the countryside after they have been closed down by returning them to nature or re-cultivating them. Portland stone Vale of Wardour : Tisbury Member, Wockley Member, Chilmark Member Portland stone is a limestone geological formation (formally named

3827-476: The German Standard , issued in 1909). Clinkers make up more than 90% of the cement, along with a limited amount of calcium sulphate (CaSO 4 , which controls the set time), and up to 5% minor constituents (fillers) as allowed by various standards. Clinkers are nodules (diameters, 0.2–1.0 inch [5.1–25.4 millimetres]) of a sintered material that is produced when a raw mixture of predetermined composition

3916-524: The Great Fire of London in 1666. All of the stone used by Wren was transported by sailing barge from Portland to the centre of London via the sea and then up the Thames. Wren's widespread use of Portland stone firmly established it as London's "local stone" and as one of the best-loved British building stones. Other famous London buildings constructed of Portland stone are The British Museum (1753) with

4005-471: The London sewer project . This became a specification for portland cement. The next development in the manufacture of portland cement was the introduction of the rotary kiln , patented by Frederick Ransome in 1885 (U.K.) and 1886 (U.S.); which allowed a stronger, more homogeneous mixture and a continuous manufacturing process. The Hoffmann "endless" kiln which was said to give "perfect control over combustion"

4094-933: The Michael Sadler Building, the Chemistry and Engineering buildings and the new Laidlaw Library. Oxford typically uses oolitic limestone in its buildings, and the Ashmolean Museum has been refurbished using a large amount of Portland stone. Portland stone has also been used across the world. Examples include the UN building in New York, the Casino Kursaal in Belgium and the Auckland War Memorial Museum . Most of

4183-553: The Occupational Safety and Health Administration (OSHA) has set the legal limit ( permissible exposure limit ) for portland cement exposure in the workplace as 50 mppcf (million particles per cubic foot) over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 10 mg/m total exposure and 5 mg/m respiratory exposure over an 8-hour workday. At levels of 5000 mg/m , portland cement

4272-786: The Portland Stone Formation ) dating to the Tithonian age of the Late Jurassic that is quarried on the Isle of Portland in Dorset , England. The quarries are cut in beds of white-grey limestone separated by chert beds. It has been used extensively as a building stone throughout the British Isles , notably in major public buildings in London such as St Paul's Cathedral and Buckingham Palace . Portland stone

4361-666: The "New Build (Modern Non-Load-bearing Stone) Award" in the 2006 Natural Stone Awards. Portland stone has been designated by the International Union of Geological Sciences as a Global Heritage Stone Resource . Following the First World War, Sir Edwin Lutyens used Portland stone (quarried from the bottom of Wakeham) to construct the Cenotaph in London's Whitehall. Erected in 1920, The Cenotaph commemorates

4450-582: The 1930s. Manchester buildings with Portland stone exterior include 100 King Street (1935), Arkwright House (1937), St. James Buildings (1912), Manchester Central Library (1934), Kendal Milne (1939) and Sunlight House (1932). Two of Liverpool's Three Graces , the Cunard Building and the Port of Liverpool Building , are clad in Portland stone which surrounds their reinforced concrete frames. The Nottingham Council House , completed in 1929,

4539-535: The Island. On February 23, 1989, the Ponce Cement plant received approval for conversion from a wet to a dry manufacturing process, which allowed it to almost double its output. As of year 2000, cement was Puerto Rico's leading nonfuel mineral commodity. 18°1′1.56″N 66°38′19″W  /  18.0171000°N 66.63861°W  / 18.0171000; -66.63861 Portland Cement Portland cement

SECTION 50

#1732779503281

4628-571: The School of Ocean and Earth Sciences at Southampton University completed a detailed geological survey of Withies Croft Quarry before the Portland Beds were quarried by Albion Stone plc. Stone has been quarried on Portland since Roman times and was being shipped to London in the 14th century. Extraction as an industry began in the early 17th century, with shipments to London for Inigo Jones ' Banqueting House . Wren 's choice of Portland for

4717-518: The building of Chelsea Barracks , Wilkins Terrace at UCL University College London , St James's Market Haymarket, London and Green Park tube station . Portland stone is prevalent in Manchester despite the historical preferred use of hard-wearing materials, such as Burmantofts and sandstone to resist the harsh industrial environment. Portland stone was mostly used in Manchester during

4806-420: The clinker with the addition of several percent (often around 5%) gypsum . Several types of portland cement are available. The most common, historically called ordinary portland cement (OPC), is grey, but white portland cement is also available. Its name is derived from its resemblance to Portland stone which is quarried on the Isle of Portland in Dorset , England. It was named by Joseph Aspdin who obtained

4895-468: The construction of a lighthouse, now known as Smeaton's Tower . In the late 18th century, Roman cement was developed and patented in 1796 by James Parker . Roman cement quickly became popular, but was largely replaced by portland cement in the 1850s. In 1811, James Frost produced a cement he called British cement. James Frost is reported to have erected a manufactory for making of an artificial cement in 1826. In 1811 Edgar Dobbs of Southwark patented

4984-492: The extreme southern end of the quarry and the High Wall Extraction on the eastern and south east boundaries. High Wall Extraction is a series of small mines that extract otherwise wasted stone that sits between the final faces of the quarry and the actual boundary of the site. Stonehills Mine is the first completely new mine on Portland (not a mine as an extension from an existing quarry). Albion Stone Plc began

5073-668: The first portland cement was produced in the Coplay Cement Company Kilns under the direction of David O. Saylor in Coplay, Pennsylvania . By the early 20th century, American-made portland cement had displaced most of the imported portland cement. ASTM C150 defines portland cement as: hydraulic cement (cement that not only hardens by reacting with water but also forms a water-resistant product) produced by pulverizing clinkers which consist essentially of hydraulic calcium silicates, usually containing one or more of

5162-436: The forces necessary to loosen the stone to the point where it can be easily removed using large wheeled loaders . Splitting stone, using pneumatic drills is arduous work and so wire-saws have been introduced into the quarries, replacing much of the plug and feather cutting. Mining in Portland is done by using a room and pillar method. The mine is advanced by extracting the stone using an abrasive tool chain cutter mounted on

5251-581: The forms of calcium sulphate as an inter ground addition. The European Standard EN 197-1 uses the following definition: Portland cement clinker is a hydraulic material which shall consist of at least two-thirds by mass of calcium silicates , (3 CaO·SiO 2 , and 2 CaO·SiO 2 ) , the remainder consisting of aluminium- and iron-containing clinker phases and other compounds. The ratio of CaO to SiO 2 shall not be less than 2.0. The magnesium oxide content ( MgO ) shall not exceed 5.0% by mass. (The last two requirements were already set out in

5340-426: The general purpose clinker is usually used, ground to a specific surface area typically 50–80% higher. The gypsum level may also be increased a small amount. This gives the concrete using this type of cement a three-day compressive strength equal to the seven-day compressive strength of types I and II. Its seven-day compressive strength is almost equal to 28-day compressive strengths of types I and II. The only downside

5429-403: The impact on the environment and local residents. Jordan's Mine is currently the biggest mine on Portland. Bowers Quarry has been operational since the late 18th century. It has been leased from The Crown Estate since 1979, and in 2002 it became the site of the first Portland stone mine by Albion Stone PLC. Extraction from this site is now completely underground, with the original Bowers Mine in

SECTION 60

#1732779503281

5518-455: The impact on wildlife and the local community with reduced noise and dust. Portland's freestone has almost certainly been used as a building material since Roman times. The many well crafted Roman sarcophagi (stone coffins and matching lids, hewn from single large blocks of Portland stone) that have been unearthed locally over the years, testify to the skill of their makers. The earliest known building to be constructed using Portland stone

5607-795: The important civic and administrative buildings which survive from 18th and 19th century Dublin , Ireland, known then as "the second city of the Empire", are of Portland stone, including City Hall (1779), the Houses of Parliament (1767), the Custom House (1791), the National Gallery (1864) and the General Post Office (1818). More recent projects include the BBC Broadcasting House in London, which won

5696-411: The island, which also includes Fancy Beach. The quarry has been worked since the late 19th century. Albion Stone leases the southern section from The Crown Estate and purchased the northern part of the site in 2006. The majority of the southern reserves lie under the grounds of the local cricket club. To avoid disturbing the site at surface level, the company has applied and received permission to extract

5785-409: The last 80 years and is one of three privately owned quarries by Portland Stone Firms Ltd, the largest landholder on the island. The quarry is nearing the end of its life and will be regenerated as a holiday caravan park to boost local tourism on the island. Perryfield Quarry is found towards the middle of the island and being actively open cast quarried. There are over 20 years of reserves left which

5874-417: The maximum percentage of (C 3 S) is thirty-five. This causes the heat given off by the hydration reaction to develop at a slower rate. Consequently, the strength of the concrete develops slowly. After one or two years the strength is higher than the other types after full curing. This cement is used for very large concrete structures, such as dams, which have a low surface to volume ratio. This type of cement

5963-571: The millions of people killed in this and subsequent conflicts. The RAF Bomber Command Memorial in London's Green Park commemorates the 55,573 crew members of the RAF's Bomber Command who were killed between 1939 and 1945. The gravestones for British personnel killed in the First and Second World Wars were made out of Portland stone. The Commonwealth War Graves Commission use Portland Limestone supplier Albion Stone's Portland Basebed. Portland stone

6052-473: The new St Paul's Cathedral was a great boost for the quarries and established Portland as London's choice of building stone. The island was connected by railway to the rest of the country from 1865. Albion Stone PLC has been quarrying and mining Portland stone since 1984. Portland Stone Firms Ltd have been quarrying Portland stone since 1994. Jordans is part of the Inmosthay Quarry in the centre of

6141-830: The new WCEC extension in Portland Roach which was short-listed for the Stirling Prize in 2017, Somerset House (1792), the General Post Office (1829), the Bank of England , the Mansion House and the National Gallery . Tower Bridge is partly clad in Portland stone (along with Cornish granite ). Portland stone was used in 1923 to build the supporting pillar of the Grace Gates at Lord's Cricket Ground . Recently, Portland stone has been used in

6230-469: The process to open this mine in 2015 and reserves are estimated to last for 50 years (2066). Independent Quarry and Admiralty Quarry are both owned by The Crown Estate and have been leased since 1982. These quarries have been worked since the mid-19th century with the final dimension stones coming out of Independent in 2006, although some stocks of Portland stone block still remain. Coombefield Quarry , located near Southwell has been open cast quarried over

6319-476: The quarries' environmental performance and removed the potential for any possible damage to the stone being quarried through shock. Full account of the local jointing pattern is made when deciding the position and orientation of cuts. Once the quarry faces have been cut, the stone is gently displaced hydraulically. This is done using "hydro-bags", which are thin, flat, steel bags or envelopes that when inflated with water under moderate pressure, are capable of producing

6408-423: The raw mix other than limestone) depend on the purity of the limestone. Some of the materials used are clay , shale , sand , iron ore , bauxite , fly ash , and slag . When a cement kiln is fired by coal, the ash of the coal acts as a secondary raw material. To achieve the desired setting qualities in the finished product, a quantity (2–8%, but typically 5%) of calcium sulphate (usually gypsum or anhydrite )

6497-500: The refurbishment of the British Museum 's central court, the planned Portland stone was controversially substituted with Anstrude Roche Claire stone from France, another similar (but cheaper) oolitic limestone. The term, "Portland cement", was coined by Joseph Aspdin who in 1824 patented a hydraulic binder created by burning a mixture of limestone and clay , resembling the previously existing Roman cement and presenting

6586-485: The rock from its natural bed, hopefully undamaged. Stone was cut using plugs and feathers , where a series of short, small diameter (typically 30 mm) holes are drilled in a line where a cut is to be made. One plug and two feathers were inserted into each hole and each plug is hit in turn with a sledgehammer until the stone yields to the extreme tensile stresses produced. Most stone is many times weaker in tension than in compression, plugs and feathers utilise this fact. It

6675-416: The same as type I. Its typical compound composition is: 51% (C 3 S), 24% (C 2 S), 6% (C 3 A), 11% (C 4 AF), 2.9% MgO, 2.5% (SO 3 ), 0.8% ignition loss, and 1.0% free CaO. A limitation on the composition is that the (C 3 A) shall not exceed 8%, which reduces its vulnerability to sulphates. This type is for general construction exposed to moderate sulphate attack, and is meant for use when concrete

6764-502: The sea allowed the quarried stone blocks to be moved over relatively large distances by barge. Portland stone was used to build the Palace of Westminster in 1347, the Tower of London in 1349 and the first stone London Bridge in 1350. Exeter Cathedral and Christchurch Priory , also constructed during the 14th Century, are built of Portland stone. Its superb characteristics have ensured

6853-488: The sea floor. Small particles of sand or organic detritus, such as shell fragments, formed a nucleus, which became coated with layers of calcite as they were rolled around in the muddy micrite. Portland stone measures 3.5 on the Mohs scale of mineral hardness . The calcite gradually accumulated (by accretion) around the fragments of shell in concentric layers, forming small balls (of less than 0.5 mm diameter). This process

6942-518: The sinuses and lungs can also cause a chemical burn, as well as headaches, fatigue, and lung cancer. The production of comparatively low-alkalinity cements (pH<11) is an area of ongoing investigation. In Scandinavia , France, and the United Kingdom, the level of chromium(VI) , which is considered to be toxic and a major skin irritant, may not exceed 2 parts per million (ppm). In the US,

7031-482: The southern tip of the island has permission to be worked by Portland Stone Firms and will provide in excess of 30 years of reserves. Permission has been granted for this to be open cast quarried. Once quarries have been worked they are then restored. The Portland Sculpture and Quarry Trust was formed in 1983 and is dedicated to preserving a knowledge and understanding of stone and the landscape from which it comes. The main non-working quarry remains Tout Quarry in which

7120-496: The stone is sufficiently well cemented to allow it to resist weathering, but not so well cemented that it cannot be readily worked (cut and carved) by masons. This is one of the reasons why Portland stone is so favoured as a monumental and architectural stone. Geoff Townson conducted three years doctoral research on the Portlandian, being the first to describe the patch-reef facies and Dorset-wide sedimentation details. Ian West of

7209-494: The stone using mining rather than quarrying techniques. The reserves to the north will be quarried using the diamond bladed cutting machines, hydro bags and wire saws to shape the blocks. This process avoids the use of dusty and noisy blasting as the primary extraction method, thereby protecting the surrounding environment, which has been designated as a Site of Special Scientific Interest (SSSI). Albion Stone PLC now extract all their stone through mining which dramatically reduces

7298-490: The trust is based, where a workshop is held every year. Tout Quarry has been donated to the Portland Sculpture and Quarry Trust by Portland Stone Firms Limited. Traditionally small diameter holes (35 mm) were drilled horizontally under each rock and charged with a small quantity of gunpowder , chosen because of its relative non-shattering properties. When fired the gunpowder produced a "heave" which dislodged

7387-406: The world market. Type III has relatively high early strength. Its typical compound composition is: 57% (C 3 S), 19% (C 2 S), 10% (C 3 A), 7% (C 4 AF), 3.0% MgO, 3.1% (SO 3 ), 0.9% ignition loss, and 1.3% free CaO. This cement is similar to type I, but ground finer. Some manufacturers make a separate clinker with higher C 3 S and/or C 3 A content, but this is increasingly rare, and

7476-597: Was developed from natural cements made in Britain beginning in the middle of the 18th century. Its name is derived from its similarity to Portland stone , a type of building stone quarried on the Isle of Portland in Dorset, England. The development of modern portland cement (sometimes called ordinary or normal portland cement) began in 1756, when John Smeaton experimented with combinations of different limestones and additives, including trass and pozzolanas , intended for

7565-483: Was involved in cement making. William Aspdin made what could be called "meso-portland cement" (a mix of portland cement and hydraulic lime). Isaac Charles Johnson further refined the production of "meso-portland cement" (middle stage of development), and claimed to be the real father of portland cement. In 1859, John Grant of the Metropolitan Board of Works, set out requirements for cement to be used in

7654-481: Was nothing like modern portland cement, but a first step in the development of modern portland cement, and has been called a "proto-portland cement". William Aspdin had left his father's company, to form his own cement manufactury. In the 1840s William Aspdin, apparently accidentally, produced calcium silicates which are a middle step in the development of portland cement. In 1848, William Aspdin further improved his cement. Then, in 1853, he moved to Germany, where he

7743-602: Was part of the Empresas Ferré enterprise from 1941 to 2002. In 1950, Empresas Ferré purchased another cement enterprise, the Puerto Rico Cement Company, then owned by the Government of Puerto Rico. In 2002, Ponce Cement, Inc., was sold to Cemex , a Mexican business concern that is both the world's largest building materials supplier and the third largest cement producer, of which Ponce Cement

7832-620: Was tested in 1860 and shown to produce a superior grade of cement. This cement was made at the Portland Cementfabrik Stern at Stettin , which was the first to use a Hoffmann kiln. The Association of German Cement Manufacturers issued a standard on portland cement in 1878. Portland cement had been imported into the United States from Germany and England , and in the 1870s and 1880s, it was being produced by Eagle Portland cement near Kalamazoo, Michigan. In 1875,

7921-609: Was used for the Armed Forces Memorial in Staffordshire , England. Designed by Liam O'Connor Architects and Planning Consultants, it was completed in 2007 at a cost of over £6 million and bears the names of over 16,000 service personnel of the British Armed Forces killed since the Second World War. Portland stone is recognised to be of a high quality, but is somewhat expensive. In the case of

#280719