Misplaced Pages

Rangitata orogeny

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Rangitata orogeny (an orogeny named after the Rangitata River ), was a long period of uplift and collision in New Zealand .

#994005

94-422: 200 million years ago, sedimentary strata were being pushed along the sea floor as the result of seafloor spreading . The moving rocks were being pushed towards a gap in the crust or subduction zone. However, when the rocks reached this zone, the wet sediments were too buoyant to follow the heavier ones through the subduction zone. Instead of this the strata were scraped off the crust and squeezed against sediments in

188-426: A magnetometer towed on the sea surface or from an aircraft. The stripes on one side of the mid-ocean ridge were the mirror image of those on the other side. By identifying a reversal with a known age and measuring the distance of that reversal from the spreading center, the spreading half-rate could be computed. In some locations spreading rates have been found to be asymmetric; the half rates differ on each side of

282-642: A rift in a continental land mass , similar to the Red Sea - East Africa Rift System today. The process starts by heating at the base of the continental crust which causes it to become more plastic and less dense. Because less dense objects rise in relation to denser objects, the area being heated becomes a broad dome (see isostasy ). As the crust bows upward, fractures occur that gradually grow into rifts. The typical rift system consists of three rift arms at approximately 120-degree angles. These areas are named triple junctions and can be found in several places across

376-405: A base or reference level h b {\displaystyle h_{b}} , the depth of the ocean d ( t ) {\displaystyle d(t)} is of interest. Because d ( t ) + h ( t ) = h b {\displaystyle d(t)+h(t)=h_{b}} (with h b {\displaystyle h_{b}} measured from

470-542: A broader aridification trend. The EMCI ended 18 million years ago, giving way to the Middle Miocene Warm Interval (MMWI), the warmest part of which was the MMCO that began 16 million years ago. As the world transitioned into the MMCO, carbon dioxide concentrations varied between 300 and 500 ppm. Global annual mean surface temperature during the MMCO was about 18.4 °C. MMCO warmth was driven by

564-529: A clade of large terrestrial predatory crocodyliformes distantly related to modern crocodilians, from which they likely diverged over 180 million years ago, are known from the Miocene of South America. The last Desmostylians thrived during this period before becoming the only extinct marine mammal order. The pinnipeds , which appeared near the end of the Oligocene, became more aquatic. A prominent genus

658-586: A constant temperature T 1 . Due to its continuous creation, the lithosphere at x > 0 is moving away from the ridge at a constant velocity v , which is assumed large compared to other typical scales in the problem. The temperature at the upper boundary of the lithosphere ( z = 0) is a constant T 0 = 0. Thus at x = 0 the temperature is the Heaviside step function T 1 ⋅ Θ ( − z ) {\displaystyle T_{1}\cdot \Theta (-z)} . The system

752-570: A cooler, drier climate. C 4 grasses, which are able to assimilate carbon dioxide and water more efficiently than C 3 grasses, expanded to become ecologically significant near the end of the Miocene between 6 and 7 million years ago, although they did not expand northward during the Late Miocene. The expansion of grasslands and radiations among terrestrial herbivores correlates to fluctuations in CO 2 . One study, however, has attributed

846-591: A failed arm that was opening more slowly than the other two arms, but in 2005 the Ethiopian Afar Geophysical Lithospheric Experiment reported that in the Afar region , September 2005, a 60 km fissure opened as wide as eight meters. During this period of initial flooding the new sea is sensitive to changes in climate and eustasy . As a result, the new sea will evaporate (partially or completely) several times before

940-406: A few kilometers to tens of kilometers wide, a crustal accretion zone within the boundary zone where the ocean crust is youngest, and an instantaneous plate boundary – a line within the crustal accretion zone demarcating the two separating plates. Within the crustal accretion zone is a 1–2 km-wide neovolcanic zone where active volcanism occurs. In the general case, seafloor spreading starts as

1034-486: A good analogue for future warmer climates caused by anthropogenic global warming , with this being especially true of the global climate during the Middle Miocene Climatic Optimum (MMCO), because the last time carbon dioxide levels were comparable to projected future atmospheric carbon dioxide levels resulting from anthropogenic climate change was during the MMCO. The Ross Sea margin of

SECTION 10

#1732787805995

1128-435: A good model for a "living fossil". Eucalyptus fossil leaves occur in the Miocene of New Zealand , where the genus is not native today, but have been introduced from Australia . Both marine and continental fauna were fairly modern, although marine mammals were less numerous. Only in isolated South America and Australia did widely divergent fauna exist. In Eurasia, genus richness shifted southward to lower latitudes from

1222-488: A great thickening of the crust, pushing the rocks down into the top of the mantle. The high pressures and temperatures of this occurrence metamorphosed the lower rocks into the Haast Schists . This orogeny article is a stub . You can help Misplaced Pages by expanding it . This New Zealand –related article is a stub . You can help Misplaced Pages by expanding it . This article about a regional geological feature

1316-482: A hypothesis of continental drift in 1912, he suggested that continents plowed through the ocean crust. This was impossible: oceanic crust is both more dense and more rigid than continental crust. Accordingly, Wegener's theory wasn't taken very seriously, especially in the United States. At first the driving force for spreading was argued to be convection currents in the mantle. Since then, it has been shown that

1410-598: A major expansion of Antarctic glaciers. This severed the connection between the Indian Ocean and the Mediterranean Sea and formed the present land connection between Afro-Arabia and Eurasia. The subsequent uplift of mountains in the western Mediterranean region and a global fall in sea levels combined to cause a temporary drying up of the Mediterranean Sea (known as the Messinian salinity crisis ) near

1504-480: A major expansion of grass-grazer ecosystems . Herds of large, swift grazers were hunted by predators across broad sweeps of open grasslands , displacing desert, woodland, and browsers . The higher organic content and water retention of the deeper and richer grassland soils , with long-term burial of carbon in sediments, produced a carbon and water vapor sink. This, combined with higher surface albedo and lower evapotranspiration of grassland, contributed to

1598-538: A rate less than 40 mm/year. The highest known rate was over 200 mm/yr during the Miocene on the East Pacific Rise . In the 1960s, the past record of geomagnetic reversals of Earth's magnetic field was noticed by observing magnetic stripe "anomalies" on the ocean floor. This results in broadly evident "stripes" from which the past magnetic field polarity can be inferred from data gathered with

1692-602: A significant drop in atmospheric carbon dioxide levels. Both continental and oceanic thermal gradients in mid-latitudes during the Early Miocene were very similar to those in the present. Global cooling caused the East Asian Summer Monsoon (EASM) to begin to take on its modern form during the Early Miocene. From 22.1 to 19.7 Ma, the Xining Basin experienced relative warmth and humidity amidst

1786-700: A significant local decline along the northeastern coast of Australia during the Tortonian, most likely due to warming seawater. Cetaceans attained their greatest diversity during the Miocene, with over 20 recognized genera of baleen whales in comparison to only six living genera. This diversification correlates with emergence of gigantic macro-predators such as megatoothed sharks and raptorial sperm whales . Prominent examples are O. megalodon and L. melvillei . Other notable large sharks were O. chubutensis , Isurus hastalis , and Hemipristis serra . Crocodilians also showed signs of diversification during

1880-651: A zone of low rainfall in the Late Miocene. The Indian Plate continued to collide with the Eurasian Plate , creating new mountain ranges and uplifting the Tibetan Plateau , resulting in the rain shadowing and aridification of the Asian interior. The Tian Shan experienced significant uplift in the Late Miocene, blocking westerlies from coming into the Tarim Basin and drying it as a result. At

1974-426: Is a stub . You can help Misplaced Pages by expanding it . Seafloor spreading Seafloor spreading , or seafloor spread , is a process that occurs at mid-ocean ridges , where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. Earlier theories by Alfred Wegener and Alexander du Toit of continental drift postulated that continents in motion "plowed" through

SECTION 20

#1732787805995

2068-401: Is added to each tectonic plate on either side of a mid-ocean ridge is the spreading half-rate and is equal to half of the spreading rate). Spreading rates determine if the ridge is fast, intermediate, or slow. As a general rule, fast ridges have spreading (opening) rates of more than 90 mm/year. Intermediate ridges have a spreading rate of 40–90 mm/year while slow spreading ridges have

2162-549: Is assumed to be at a quasi- steady state , so that the temperature distribution is constant in time, i.e. T = T ( x , z ) . {\displaystyle T=T(x,z).} By calculating in the frame of reference of the moving lithosphere (velocity v ), which has spatial coordinate x ′ = x − v t , {\displaystyle x'=x-vt,} T = T ( x ′ , z , t ) . {\displaystyle T=T(x',z,t).} and

2256-509: Is continually formed during seafloor spreading. Seafloor spreading helps explain continental drift in the theory of plate tectonics . When oceanic plates diverge , tensional stress causes fractures to occur in the lithosphere . The motivating force for seafloor spreading ridges is tectonic plate slab pull at subduction zones , rather than magma pressure, although there is typically significant magma activity at spreading ridges. Plates that are not subducting are driven by gravity sliding off

2350-641: Is forced under either continental crust or oceanic crust. Today, the Atlantic basin is actively spreading at the Mid-Atlantic Ridge . Only a small portion of the oceanic crust produced in the Atlantic is subducted. However, the plates making up the Pacific Ocean are experiencing subduction along many of their boundaries which causes the volcanic activity in what has been termed the Ring of Fire of

2444-477: Is found within the crustal accretion zone. The differences in spreading rates affect not only the geometries of the ridges but also the geochemistry of the basalts that are produced. Since the new oceanic basins are shallower than the old oceanic basins, the total capacity of the world's ocean basins decreases during times of active sea floor spreading. During the opening of the Atlantic Ocean , sea level

2538-682: Is of particular interest to geologists and palaeoclimatologists because major phases of the geology of the Himalaya occurred during that epoch, affecting monsoonal patterns in Asia, which were interlinked with glacial periods in the northern hemisphere. The Miocene faunal stages from youngest to oldest are typically named according to the International Commission on Stratigraphy : Regionally, other systems are used, based on characteristic land mammals; some of them overlap with

2632-510: Is small compared to L 2 / A {\displaystyle L^{2}/A} , where L is the ocean width (from mid-ocean ridges to continental shelf ) and A is the age of the ocean basin. The effective thermal expansion coefficient α e f f {\displaystyle \alpha _{\mathrm {eff} }} is different from the usual thermal expansion coefficient α {\displaystyle \alpha } due to isostasic effect of

2726-480: Is the density of water. By substituting the parameters by their rough estimates: gives: where the height is in meters and time is in millions of years. To get the dependence on x , one must substitute t = x / v ~ Ax / L , where L is the distance between the ridge to the continental shelf (roughly half the ocean width), and A is the ocean basin age. Rather than height of the ocean floor h ( t ) {\displaystyle h(t)} above

2820-595: Is the first geological epoch of the Neogene Period and extends from about 23.03 to 5.333 million years ago (Ma). The Miocene was named by Scottish geologist Charles Lyell ; the name comes from the Greek words μείων ( meíōn , "less") and καινός ( kainós , "new") and means "less recent" because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene followed

2914-559: The Middle Miocene Climate Transition (MMCT). Abrupt increases in opal deposition indicate this cooling was driven by enhanced drawdown of carbon dioxide via silicate weathering. The MMCT caused a sea surface temperature (SST) drop of approximately 6 °C in the North Atlantic. The drop in benthic foraminiferal δ O values was most noticeable in the waters around Antarctica, suggesting cooling

Rangitata orogeny - Misplaced Pages Continue

3008-522: The Oligocene and preceded the Pliocene. As Earth went from the Oligocene through the Miocene and into the Pliocene, the climate slowly cooled towards a series of ice ages . The Miocene boundaries are not marked by distinct global events but by regionally defined transitions from the warmer Oligocene to the cooler Pliocene Epoch. During the Early Miocene, Afro-Arabia collided with Eurasia, severing

3102-560: The carbon cycle occurred approximately 6 Ma, causing continental carbon reservoirs to no longer expand during cold spells, as they had done during cold periods in the Oligocene and most of the Miocene. At the end of the Miocene, global temperatures rose again as the amplitude of Earth's obliquity increased, which caused increased aridity in Central Asia. Around 5.5 Ma, the EAWM underwent a period of rapid intensification. Life during

3196-424: The heat equation is: where κ {\displaystyle \kappa } is the thermal diffusivity of the mantle lithosphere. Since T depends on x' and t only through the combination x = x ′ + v t , {\displaystyle x=x'+vt,} : Thus: It is assumed that v {\displaystyle v} is large compared to other scales in

3290-710: The Central Paratethys, cut off from sources of freshwater input by its separation from the Eastern Paratethys. From 13.36 to 12.65 Ma, the Central Paratethys was characterised by open marine conditions, before the reopening of the Bârlad Strait resulted in a shift to brackish-marine conditions in the Central Paratethys, causing the Badenian-Sarmatian Extinction Event. As a result of the Bârlad Strait's reopening,

3384-837: The Early to the Middle Miocene. Europe's large mammal diversity significantly declined during the Late Miocene. In the Early Miocene, several Oligocene groups were still diverse, including nimravids , entelodonts , and three-toed equids. As in the previous Oligocene Epoch, oreodonts were still diverse, only to disappear in the earliest Pliocene. During the later Miocene mammals were more modern, with easily recognizable canids , bears , red pandas , procyonids , equids , beavers , deer , camelids , and whales , along with now-extinct groups like borophagine canids , certain gomphotheres , three-toed horses , and hornless rhinos like Teleoceras and Aphelos . The late Miocene also marks

3478-720: The East Antarctic Ice Sheet (EAIS) was highly dynamic during the Early Miocene. The Miocene began with the Early Miocene Cool Event (Mi-1) around 23 million years ago, which marked the start of the Early Miocene Cool Interval (EMCI). This cool event occurred immediately after the Oligocene-Miocene Transition (OMT) during a major expansion of Antarctica's ice sheets, but was not associated with

3572-545: The East Asian Winter Monsoon (EAWM) became stronger synchronously with a southward shift of the subarctic front. Greenland may have begun to have large glaciers as early as 8 to 7 Ma, although the climate for the most part remained warm enough to support forests there well into the Pliocene. Zhejiang, China was noticeably more humid than today. In the Great Rift Valley of Kenya , there

3666-460: The LMC; extratropical sea surface temperatures dropped substantially by approximately 7–9 °C. 41 kyr obliquity cycles became the dominant orbital climatic control 7.7 Ma and this dominance strengthened 6.4 Ma. Benthic δ O values show significant glaciation occurred from 6.26 to 5.50 Ma, during which glacial-interglacial cycles were governed by the 41 kyr obliquity cycle. A major reorganisation of

3760-579: The Late Cretaceous, are known from the Miocene of Patagonia, represented by the mole-like Necrolestes . The youngest known representatives of metatherians (the broader grouping to which marsupials belong) in Europe, Asia and Africa are known from the Miocene, including the European herpetotheriid Amphiperatherium , the peradectids Siamoperadectes and Sinoperadectes from Asia, and

3854-705: The Late Miocene, the Earth's climate began to display a high degree of similarity to that of the present day . The 173 kyr obliquity modulation cycle governed by Earth's interactions with Saturn became detectable in the Late Miocene. By 12 Ma, Oregon was a savanna akin to that of the western margins of the Sierra Nevada of northern California . Central Australia became progressively drier, although southwestern Australia experienced significant wettening from around 12 to 8 Ma. The South Asian Winter Monsoon (SAWM) underwent strengthening ~9.2–8.5 Ma. From 7.9 to 5.8 Ma,

Rangitata orogeny - Misplaced Pages Continue

3948-574: The Miocene Epoch was mostly supported by the two newly formed biomes , kelp forests and grasslands . Grasslands allow for more grazers, such as horses , rhinoceroses , and hippos . Ninety-five percent of modern plants existed by the end of this epoch . Modern bony fish genera were established. A modern-style latitudinal biodiversity gradient appeared ~15 Ma. The coevolution of gritty , fibrous, fire-tolerant grasses and long-legged gregarious ungulates with high-crowned teeth , led to

4042-449: The Miocene. The largest form among them was a gigantic caiman Purussaurus which inhabited South America. Another gigantic form was a false gharial Rhamphosuchus , which inhabited modern age India . A strange form, Mourasuchus also thrived alongside Purussaurus . This species developed a specialized filter-feeding mechanism, and it likely preyed upon small fauna despite its gigantic size. The youngest members of Sebecidae ,

4136-698: The Miocene–Pliocene boundary, the Strait of Gibraltar opened, and the Mediterranean refilled. That event is referred to as the " Zanclean flood ". Also during the early Miocene (specifically the Aquitanian and Burdigalian Stages), the apes first evolved, began diversifying, and became widespread throughout the Old World . Around the end of this epoch, the ancestors of humans had split away from

4230-550: The North American Great Plains and in Argentina . The global trend was towards increasing aridity caused primarily by global cooling reducing the ability of the atmosphere to absorb moisture, particularly after 7 to 8 million years ago. Uplift of East Africa in the late Miocene was partly responsible for the shrinking of tropical rain forests in that region, and Australia got drier as it entered

4324-497: The North Pacific): Assuming isostatic equilibrium everywhere beneath the cooling plate yields a revised age depth relationship for older sea floor that is approximately correct for ages as young as 20 million years: Thus older seafloor deepens more slowly than younger and in fact can be assumed almost constant at ~6400 m depth. Parsons and Sclater concluded that some style of mantle convection must apply heat to

4418-656: The Oligocene–Miocene transgression. As the southern Andes rose in the Middle Miocene (14–12 million years ago) the resulting rain shadow originated the Patagonian Desert to the east. Far northern Australia was monsoonal during the Miocene. Although northern Australia is often believed to have been much wetter during the Miocene, this interpretation may be an artefact of preservation bias of riparian and lacustrine plants; this finding has itself been challenged by other papers. Western Australia, like today,

4512-618: The Pacific Ocean. The Pacific is also home to one of the world's most active spreading centers (the East Pacific Rise) with spreading rates of up to 145 ± 4 mm/yr between the Pacific and Nazca plates . The Mid-Atlantic Ridge is a slow-spreading center, while the East Pacific Rise is an example of fast spreading. Spreading centers at slow and intermediate rates exhibit a rift valley while at fast rates an axial high

4606-561: The Qiongdongnan Basin in the northern South China Sea indicates the Pearl River was a major source of sediment flux into the sea during the Early Miocene and was a major fluvial system as in the present. During the Oligocene and Early Miocene, the coast of northern Brazil, Colombia, south-central Peru , central Chile and large swathes of inland Patagonia were subject to a marine transgression . The transgressions in

4700-497: The activity of the Columbia River Basalts and enhanced by decreased albedo from the reduction of deserts and expansion of forests. Climate modelling suggests additional, currently unknown, factors also worked to create the warm conditions of the MMCO. The MMCO saw the expansion of the tropical climatic zone to much larger than its current size. The July ITCZ, the zone of maximal monsoonal rainfall, moved to

4794-531: The ancestors of the chimpanzees and had begun following their own evolutionary path during the final Messinian Stage (7.5–5.3 Ma) of the Miocene. As in the Oligocene before it, grasslands continued to expand, and forests to dwindle. In the seas of the Miocene, kelp forests made their first appearance and soon became one of Earth's most productive ecosystems. The plants and animals of the Miocene were recognizably modern. Mammals and birds were well established. Whales , pinnipeds , and kelp spread. The Miocene

SECTION 50

#1732787805995

4888-472: The aridity of the former. Unequivocally-recognizable dabbling ducks , plovers , typical owls , cockatoos and crows appear during the Miocene. By the epoch's end, all or almost all modern bird groups are believed to have been present; the few post-Miocene bird fossils which cannot be placed in the evolutionary tree with full confidence are simply too badly preserved, rather than too equivocal in character. Marine birds reached their highest diversity ever in

4982-672: The base of the plate everywhere to prevent cooling down below 125 km and lithosphere contraction (seafloor deepening) at older ages. Their plate model also allowed an expression for conductive heat flow, q(t) from the ocean floor, which is approximately constant at 1 ⋅ 10 − 6 c a l c m − 2 s e c − 1 {\displaystyle 1\cdot 10^{-6}\mathrm {cal} \,\mathrm {cm} ^{-2}\mathrm {sec} ^{-1}} beyond 120 million years: Miocene The Miocene ( / ˈ m aɪ . ə s iː n , - oʊ -/ MY -ə-seen, -⁠oh- )

5076-638: The beginning of the Miocene, the northern margin of the Arabian plate, then part of the African landmass, collided with Eurasia; as a result, the Tethys seaway continued to shrink and then disappeared as Africa collided with Eurasia in the Turkish – Arabian region. The first step of this closure occurred 20 Ma, reducing water mass exchange by 90%, while the second step occurred around 13.8 Ma, coincident with

5170-533: The change in water column height above the lithosphere as it expands or retracts. Both coefficients are related by: where ρ ∼ 3.3   g ⋅ c m − 3 {\displaystyle \rho \sim 3.3\ \mathrm {g} \cdot \mathrm {cm} ^{-3}} is the rock density and ρ 0 = 1   g ⋅ c m − 3 {\displaystyle \rho _{0}=1\ \mathrm {g} \cdot \mathrm {cm} ^{-3}}

5264-422: The connection between the Mediterranean and Indian Oceans, and allowing the interchange of fauna between Eurasia and Africa, including the dispersal of proboscideans and hominoids into Eurasia. During the late Miocene, the connections between the Atlantic and Mediterranean closed, causing the Mediterranean Sea to almost completely evaporate. This event is referred to as the " Messinian salinity crisis ". Then, at

5358-472: The continent is completely severed, then a new ocean basin is created. The Red Sea has not yet completely split Arabia from Africa, but a similar feature can be found on the other side of Africa that has broken completely free. South America once fit into the area of the Niger Delta . The Niger River has formed in the failed rift arm of the triple junction . As new seafloor forms and spreads apart from

5452-399: The continental crust is attenuated as far as it will stretch. At this point basaltic oceanic crust and upper mantle lithosphere begins to form between the separating continental fragments. When one of the rifts opens into the existing ocean, the rift system is flooded with seawater and becomes a new sea. The Red Sea is an example of a new arm of the sea. The East African rift was thought to be

5546-577: The course of this epoch . The youngest representatives of Choristodera , an extinct order of aquatic reptiles that first appeared in the Middle Jurassic , are known from the Miocene of Europe, belonging to the genus Lazarussuchus , which had been the only known surviving genus of the group since the beginning of the Eocene. The last known representatives of the archaic primitive mammal order Meridiolestida , which dominated South America during

5640-488: The elevated mid-ocean ridges a process called ridge push . At a spreading center, basaltic magma rises up the fractures and cools on the ocean floor to form new seabed . Hydrothermal vents are common at spreading centers. Older rocks will be found farther away from the spreading zone while younger rocks will be found nearer to the spreading zone. Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. (The rate at which new oceanic lithosphere

5734-399: The elevation of the rift valley has been lowered to the point that the sea becomes stable. During this period of evaporation large evaporite deposits will be made in the rift valley. Later these deposits have the potential to become hydrocarbon seals and are of particular interest to petroleum geologists . Seafloor spreading can stop during the process, but if it continues to the point that

SECTION 60

#1732787805995

5828-578: The end of the Miocene due to increased habitat uniformity. The expansion of grasslands in North America also led to an explosive radiation among snakes. Previously, snakes were a minor component of the North American fauna, but during the Miocene, the number of species and their prevalence increased dramatically with the first appearances of vipers and elapids in North America and the significant diversification of Colubridae (including

5922-422: The end of the Miocene. The Paratethys underwent a significant transgression during the early Middle Miocene. Around 13.8 Ma, during a global sea level drop, the Eastern Paratethys was cut off from the global ocean by the closure of the Bârlad Strait, effectively turning it into a saltwater lake. From 13.8 to 13.36 Ma, an evaporite period similar to the later Messinian salinity crisis in the Mediterranean ensued in

6016-637: The enigmatic Saint Bathans Mammal . Microbial life in the igneous crust of the Fennoscandian Shield shifted from being dominated by methanogens to being primarily composed of sulphate-reducing prokaryotes . The change resulted from fracture reactivation during the Pyrenean-Alpine orogeny, enabling sulphate-reducing microbes to permeate into the Fennoscandian Shield via descending surficial waters. Diatom diversity

6110-461: The evolution of both groups into modern representatives. The early Miocene Saint Bathans Fauna is the only Cenozoic terrestrial fossil record of the landmass, showcasing a wide variety of not only bird species, including early representatives of clades such as moa , kiwi and adzebills , but also a diverse herpetofauna of sphenodontians , crocodiles and turtles as well as a rich terrestrial mammal fauna composed of various species of bats and

6204-499: The expansion of grasslands not to a CO 2 drop but to the increasing seasonality and aridity, coupled with a monsoon climate, which made wildfires highly prevalent compared to before. The Late Miocene expansion of grasslands had cascading effects on the global carbon cycle, evidenced by the imprint it left in carbon isotope records. Cycads between 11.5 and 5 million years ago began to rediversify after previous declines in variety due to climatic changes, and thus modern cycads are not

6298-718: The extinction of the last-surviving members of the hyaenodonts . Islands began to form between South and North America in the Late Miocene, allowing ground sloths like Thinobadistes to island-hop to North America. The expansion of silica-rich C 4 grasses led to worldwide extinctions of herbivorous species without high-crowned teeth . Mustelids diversified into their largest forms as terrestrial predators like Ekorus , Eomellivora , and Megalictis and bunodont otters like Enhydriodon and Sivaonyx appeared. Eulipotyphlans were widespread in Europe, being less diverse in Southern Europe than farther north due to

6392-629: The findings of marine invertebrate fossils of both Atlantic and Pacific affinity in La Cascada Formation . Connection would have occurred through narrow epicontinental seaways that formed channels in a dissected topography . The Antarctic Plate started to subduct beneath South America 14 million years ago in the Miocene, forming the Chile Triple Junction . At first the Antarctic Plate subducted only in

6486-495: The fixed and immovable seafloor. The idea that the seafloor itself moves and also carries the continents with it as it spreads from a central rift axis was proposed by Harold Hammond Hess from Princeton University and Robert Dietz of the U.S. Naval Electronics Laboratory in San Diego in the 1960s. The phenomenon is known today as plate tectonics . In locations where two plates move apart, at mid-ocean ridges, new seafloor

6580-464: The human lineage) appeared in Africa at the very end of the Miocene, including Sahelanthropus , Orrorin , and an early form of Ardipithecus ( A. kadabba ). The chimpanzee–human divergence is thought to have occurred at this time. The evolution of bipedalism in apes at the end of the Miocene instigated an increased rate of faunal turnover in Africa. In contrast, European apes met their end at

6674-606: The lake levels of the Eastern Paratethys dropped as it once again became a sea. The Fram Strait opened during the Miocene and acted as the only throughflow for Atlantic Water into the Arctic Ocean until the Quaternary period. Due to regional uplift of the continental shelf, this water could not move through the Barents Seaway in the Miocene. The modern day Mekong Delta took shape after 8 Ma. Geochemistry of

6768-414: The mantle half-space model, the seabed height is determined by the oceanic lithosphere and mantle temperature, due to thermal expansion. The simple result is that the ridge height or ocean depth is proportional to the square root of its age. Oceanic lithosphere is continuously formed at a constant rate at the mid-ocean ridges . The source of the lithosphere has a half-plane shape ( x = 0, z < 0) and

6862-406: The mid-ocean ridge it slowly cools over time. Older seafloor is, therefore, colder than new seafloor, and older oceanic basins deeper than new oceanic basins due to isostasy. If the diameter of the earth remains relatively constant despite the production of new crust, a mechanism must exist by which crust is also destroyed. The destruction of oceanic crust occurs at subduction zones where oceanic crust

6956-405: The motion of the continents is linked to seafloor spreading by the theory of plate tectonics, which is driven by convection that includes the crust itself as well. The driver for seafloor spreading in plates with active margins is the weight of the cool, dense, subducting slabs that pull them along, or slab pull. The magmatism at the ridge is considered to be passive upwelling, which is caused by

7050-547: The north, increasing precipitation over southern China whilst simultaneously decreasing it over Indochina during the EASM. Western Australia was at this time characterised by exceptional aridity. In Antarctica, average summer temperatures on land reached 10 °C. In the oceans, the lysocline shoaled by approximately half of a kilometre during warm phases that corresponded to orbital eccentricity maxima. The MMCO ended around 14 million years ago, when global temperatures fell in

7144-454: The ocean surface): The depth predicted by the square root of seafloor age derived above is too deep for seafloor older than 80 million years. Depth is better explained by a cooling lithosphere plate model rather than the cooling mantle half-space. The plate has a constant temperature at its base and spreading edge. Analysis of depth versus age and depth versus square root of age data allowed Parsons and Sclater to estimate model parameters (for

7238-523: The origin of many modern genera such as Nerodia , Lampropeltis , Pituophis and Pantherophis ). Arthropods were abundant, including in areas such as Tibet where they have traditionally been thought to be undiverse. Neoisopterans diversified and expanded into areas they previously were absent from, such as Madagascar and Australia. In the oceans, brown algae , called kelp , proliferated, supporting new species of sea life, including otters , fish and various invertebrates . Corals suffered

7332-418: The plates are sliding apart over the mantle upwelling in the process of ridge push. The depth of the seafloor (or the height of a location on a mid-ocean ridge above a base-level) is closely correlated with its age (age of the lithosphere where depth is measured). The age-depth relation can be modeled by the cooling of a lithosphere plate or mantle half-space in areas without significant subduction . In

7426-558: The plates being pulled apart under the weight of their own slabs. This can be thought of as analogous to a rug on a table with little friction: when part of the rug is off of the table, its weight pulls the rest of the rug down with it. However, the Mid-Atlantic ridge itself is not bordered by plates that are being pulled into subduction zones, except the minor subduction in the Lesser Antilles and Scotia Arc . In this case

7520-463: The possible herpetotheriid Morotodon from the late Early Miocene of Uganda. Approximately 100 species of apes lived during this time , ranging throughout Africa, Asia and Europe and varying widely in size, diet, and anatomy. Due to scanty fossil evidence it is unclear which ape or apes contributed to the modern hominid clade, but molecular evidence indicates this ape lived between 18 and 13 million years ago. The first hominins ( bipedal apes of

7614-846: The preceding Oligocene and following Pliocene Epochs: Continents continued to drift toward their present positions. Of the modern geologic features, only the land bridge between South America and North America was absent, although South America was approaching the western subduction zone in the Pacific Ocean , causing both the rise of the Andes and a southward extension of the Meso-American peninsula. Mountain building took place in western North America , Europe , and East Asia . Both continental and marine Miocene deposits are common worldwide with marine outcrops common near modern shorelines. Well studied continental exposures occur in

7708-452: The problem; therefore the last term in the equation is neglected, giving a 1-dimensional diffusion equation: with the initial conditions The solution for z ≤ 0 {\displaystyle z\leq 0} is given by the error function : Due to the large velocity, the temperature dependence on the horizontal direction is negligible, and the height at time t (i.e. of sea floor of age t ) can be calculated by integrating

7802-414: The ridge crest by about five percent. This is thought due to temperature gradients in the asthenosphere from mantle plumes near the spreading center. Seafloor spreading occurs at spreading centers, distributed along the crests of mid-ocean ridges. Spreading centers end in transform faults or in overlapping spreading center offsets. A spreading center includes a seismically active plate boundary zone

7896-714: The southernmost tip of Patagonia, meaning that the Chile Triple Junction lay near the Strait of Magellan . As the southern part of Nazca Plate and the Chile Rise became consumed by subduction the more northerly regions of the Antarctic Plate begun to subduct beneath Patagonia so that the Chile Triple Junction advanced to the north over time. The asthenospheric window associated to the triple junction disturbed previous patterns of mantle convection beneath Patagonia inducing an uplift of ca. 1 km that reversed

7990-436: The thermal expansion over z : where α e f f {\displaystyle \alpha _{\mathrm {eff} }} is the effective volumetric thermal expansion coefficient, and h 0 is the mid-ocean ridge height (compared to some reference). The assumption that v is relatively large is equivalent to the assumption that the thermal diffusivity κ {\displaystyle \kappa }

8084-413: The volcanic sea to the west. This collision lasted for 50 million years. However, the wet sediments could not just keep piling up. After 50 million years, there was simply too much rock and a 'log jam' in the process was formed. The rocks were squeezed together as they broke and crumpled up. As the compression intensified, the strata were slowly pushed up, creating new land. The collision was also causing

8178-604: The west coast of South America are thought to be caused by a regional phenomenon while the steadily rising central segment of the Andes represents an exception. While there are numerous registers of Oligocene–Miocene transgressions around the world it is doubtful that these correlate. It is thought that the Oligocene–Miocene transgression in Patagonia could have temporarily linked the Pacific and Atlantic Oceans, as inferred from

8272-435: The world today. The separated margins of the continents evolve to form passive margins . Hess' theory was that new seafloor is formed when magma is forced upward toward the surface at a mid-ocean ridge. If spreading continues past the incipient stage described above, two of the rift arms will open while the third arm stops opening and becomes a 'failed rift' or aulacogen . As the two active rifts continue to open, eventually

8366-423: Was Allodesmus . A ferocious walrus , Pelagiarctos may have preyed upon other species of pinnipeds including Allodesmus . Furthermore, South American waters witnessed the arrival of Megapiranha paranensis , which were considerably larger than modern age piranhas . New Zealand 's Miocene fossil record is particularly rich. Marine deposits showcase a variety of cetaceans and penguins , illustrating

8460-624: Was a gradual and progressive trend of increasing aridification, though it was not unidirectional, and wet humid episodes continued to occur. Between 7 and 5.3 Ma, temperatures dropped sharply again in the Late Miocene Cooling (LMC), most likely as a result of a decline in atmospheric carbon dioxide and a drop in the amplitude of Earth's obliquity, and the Antarctic ice sheet was approaching its present-day size and thickness. Ocean temperatures plummeted to near-modern values during

8554-464: Was arid, particularly so during the Middle Miocene. Climates remained moderately warm, although the slow global cooling that eventually led to the Pleistocene glaciations continued. Although a long-term cooling trend was well underway, there is evidence of a warm period during the Miocene when the global climate rivalled that of the Oligocene . The climate of the Miocene has been suggested as

8648-688: Was inversely correlated with carbon dioxide levels and global temperatures during the Miocene. Most modern lineages of diatoms appeared by the Late Miocene. There is evidence from oxygen isotopes at Deep Sea Drilling Program sites that ice began to build up in Antarctica about 36 Ma during the Eocene . Further marked decreases in temperature during the Middle Miocene at 15 Ma probably reflect increased ice growth in Antarctica. It can therefore be assumed that East Antarctica had some glaciers during

8742-646: Was most intense there. Around this time the Mi3b glacial event (a massive expansion of Antarctic glaciers) occurred. The East Antarctic Ice Sheet (EAIS) markedly stabilised following the MMCT. The intensification of glaciation caused a decoherence of sediment deposition from the 405 kyr eccentricity cycle. The MMWI ended about 11 Ma, when the Late Miocene Cool Interval (LMCI) started. A major but transient warming occurred around 10.8-10.7 Ma. During

8836-593: Was so high that a Western Interior Seaway formed across North America from the Gulf of Mexico to the Arctic Ocean . At the Mid-Atlantic Ridge (and in other mid-ocean ridges), material from the upper mantle rises through the faults between oceanic plates to form new crust as the plates move away from each other, a phenomenon first observed as continental drift. When Alfred Wegener first presented

#994005