The Omotic languages are a group of languages spoken in southwestern Ethiopia , in the Omo River region and southeastern Sudan in Blue Nile State . The Geʽez script is used to write some of the Omotic languages, the Latin script for some others. They are fairly agglutinative and have complex tonal systems (for example, the Bench language ). The languages have around 7.9 million speakers. The group is generally classified as belonging to the Afroasiatic language family , but this is disputed by some linguists.
86-551: Four separate "Omotic" groups are accepted by Glottolog 4.0 and Güldemann (2018): North Omotic , Dizoid (Maji), Mao , and Aroid ("South Omotic"). The North and South Omotic branches ("Nomotic" and "Somotic") are universally recognized, with some dispute as to the composition of North Omotic. The primary debate is over the placement of the Mao languages . Bender (2000) classifies Omotic languages as follows: Apart from terminology, this differs from Fleming (1976) in including
172-405: A catalogue of the world's languages and language families and a bibliography on individual languages. It differs from Ethnologue in several respects: Language names used in the bibliographic entries are identified by ISO 639-3 code or Glottolog's own code (Glottocode). External links are provided to ISO, Ethnologue and other online language databases The latest version is 5.0, released under
258-554: A determination, and simply assign the flap in both cases to a single archiphoneme, written (for example) //D// . Further mergers in English are plosives after /s/ , where /p, t, k/ conflate with /b, d, ɡ/ , as suggested by the alternative spellings sketti and sghetti . That is, there is no particular reason to transcribe spin as /ˈspɪn/ rather than as /ˈsbɪn/ , other than its historical development, and it might be less ambiguously transcribed //ˈsBɪn// . A morphophoneme
344-523: A dialect of Kafa but notes it may be a distinct language. Omotic is generally considered the most divergent branch of the Afroasiatic languages . In early work up to Greenberg (1963), the languages had been classified in a subgroup of Cushitic , called most often "West Cushitic". Fleming (1969) argued that it should instead be classified as an independent branch of Afroasiatic, a view which Bender (1971) established to most linguists' satisfaction, though
430-517: A few linguists maintain the West Cushitic position or that only South Omotic forms a separate branch, with North Omotic remaining part of Cushitic. Blench notes that Omotic shares honey-related vocabulary with Cushitic but not cattle-related vocabulary, suggesting that the split occurred before the advent of pastoralism . A few scholars have raised doubts that the Omotic languages are part of
516-466: A given language may be highly distorted; this is the case with English, for example. The correspondence between symbols and phonemes in alphabetic writing systems is not necessarily a one-to-one correspondence . A phoneme might be represented by a combination of two or more letters ( digraph , trigraph , etc. ), like ⟨sh⟩ in English or ⟨sch⟩ in German (both representing
602-406: A near minimal pair. The reason why this is still acceptable proof of phonemehood is that there is nothing about the additional difference (/r/ vs. /l/) that can be expected to somehow condition a voicing difference for a single underlying postalveolar fricative. One can, however, find true minimal pairs for /ʃ/ and /ʒ/ if less common words are considered. For example, ' Confucian ' and 'confusion' are
688-483: A phoneme has more than one allophone , the one actually heard at a given occurrence of that phoneme may be dependent on the phonetic environment (surrounding sounds). Allophones that normally cannot appear in the same environment are said to be in complementary distribution . In other cases, the choice of allophone may be dependent on the individual speaker or other unpredictable factors. Such allophones are said to be in free variation , but allophones are still selected in
774-401: A set (or equivalence class ) of spoken sound variations that are nevertheless perceived as a single basic unit of sound by the ordinary native speakers of a given language. While phonemes are considered an abstract underlying representation for sound segments within words, the corresponding phonetic realizations of those phonemes—each phoneme with its various allophones—constitute
860-417: A set of phonemes, and these different systems or solutions are not simply correct or incorrect, but may be regarded only as being good or bad for various purposes". The linguist F. W. Householder referred to this argument within linguistics as "God's Truth" (i.e. the stance that a given language has an intrinsic structure to be discovered) vs. "hocus-pocus" (i.e. the stance that any proposed, coherent structure
946-456: A simple /k/ , colloquial Samoan lacks /t/ and /n/ , while Rotokas and Quileute lack /m/ and /n/ . During the development of phoneme theory in the mid-20th century, phonologists were concerned not only with the procedures and principles involved in producing a phonemic analysis of the sounds of a given language, but also with the reality or uniqueness of the phonemic solution. These were central concerns of phonology . Some writers took
SECTION 10
#17327767865361032-435: A single morphophoneme, which might be transcribed (for example) //z// or |z| , and which is realized phonemically as /s/ after most voiceless consonants (as in cat s ) and as /z/ in other cases (as in dog s ). All known languages use only a small subset of the many possible sounds that the human speech organs can produce, and, because of allophony , the number of distinct phonemes will generally be smaller than
1118-515: A single phoneme: the one traditionally represented in the IPA as /t/ . For computer-typing purposes, systems such as X-SAMPA exist to represent IPA symbols using only ASCII characters. However, descriptions of particular languages may use different conventional symbols to represent the phonemes of those languages. For languages whose writing systems employ the phonemic principle , ordinary letters may be used to denote phonemes, although this approach
1204-411: A speaker pronounces /p/ are phonetic and written between brackets, like [p] for the p in spit versus [pʰ] for the p in pit , which in English is an aspirated allophone of /p/ (i.e., pronounced with an extra burst of air). There are many views as to exactly what phonemes are and how a given language should be analyzed in phonemic terms. Generally, a phoneme is regarded as an abstraction of
1290-546: A specific phonetic context, not the other way around. The term phonème (from Ancient Greek : φώνημα , romanized : phōnēma , "sound made, utterance, thing spoken, speech, language" ) was reportedly first used by A. Dufriche-Desgenettes in 1873, but it referred only to a speech sound. The term phoneme as an abstraction was developed by the Polish linguist Jan Baudouin de Courtenay and his student Mikołaj Kruszewski during 1875–1895. The term used by these two
1376-505: A unified group, and also does not consider any of the "Omotic" groups to be part of the Afroasiatic phylum. Glottolog accepts the following as independent language families. These four families are also accepted by Güldemann (2018), who similarly doubts the validity of Omotic as a unified group. The Omotic languages have a morphology that is partly agglutinative and partly fusional : Inflection through suprasegmental morphemes
1462-472: A unique phoneme in such cases, since to do so would mean providing redundant or even arbitrary information – instead they use the technique of underspecification . An archiphoneme is an object sometimes used to represent an underspecified phoneme. An example of neutralization is provided by the Russian vowels /a/ and /o/ . These phonemes are contrasting in stressed syllables, but in unstressed syllables
1548-452: A valid minimal pair. Besides segmental phonemes such as vowels and consonants, there are also suprasegmental features of pronunciation (such as tone and stress , syllable boundaries and other forms of juncture , nasalization and vowel harmony ), which, in many languages, change the meaning of words and so are phonemic. Phonemic stress is encountered in languages such as English. For example, there are two words spelled invite , one
1634-404: A ˧, depending on the person): In most languages, the singular is unmarked, while the plural has its own suffix . It is possible that plural suffixes in some languages arose from a partitive construction. This is supported by the length of certain plural suffixes, formal relationships to the genitive singular and the fact that the determining suffix sometimes comes before the plural suffix, which
1720-418: Is a purely articulatory system apart from the use of the acoustic term 'sibilant'. In the description of some languages, the term chroneme has been used to indicate contrastive length or duration of phonemes. In languages in which tones are phonemic, the tone phonemes may be called tonemes . Though not all scholars working on such languages use these terms, they are by no means obsolete. By analogy with
1806-414: Is a theoretical unit at a deeper level of abstraction than traditional phonemes, and is taken to be a unit from which morphemes are built up. A morphophoneme within a morpheme can be expressed in different ways in different allomorphs of that morpheme (according to morphophonological rules). For example, the English plural morpheme -s appearing in words such as cats and dogs can be considered to be
SECTION 20
#17327767865361892-439: Is a verb and is stressed on the second syllable, the other is a noun and stressed on the first syllable (without changing any of the individual sounds). The position of the stress distinguishes the words and so a full phonemic specification would include indication of the position of the stress: /ɪnˈvaɪt/ for the verb, /ˈɪnvaɪt/ for the noun. In other languages, such as French , word stress cannot have this function (its position
1978-590: Is an open-access online bibliographic database of the world's languages. In addition to listing linguistic materials ( grammars , articles, dictionaries ) describing individual languages, the database also contains the most up-to-date language affiliations based on the work of expert linguists . Glottolog was first developed and maintained at the Max Planck Institute for Evolutionary Anthropology in Leipzig , Germany, and between 2015 and 2020 at
2064-417: Is any set of similar speech sounds that is perceptually regarded by the speakers of a language as a single basic sound—a smallest possible phonetic unit—that helps distinguish one word from another. All languages contains phonemes (or the spatial-gestural equivalent in sign languages ), and all spoken languages include both consonant and vowel phonemes. Phonemes are primarily studied under
2150-667: Is as good as any other). Different analyses of the English vowel system may be used to illustrate this. The article English phonology states that "English has a particularly large number of vowel phonemes" and that "there are 20 vowel phonemes in Received Pronunciation, 14–16 in General American and 20–21 in Australian English". Although these figures are often quoted as fact, they actually reflect just one of many possible analyses, and later in
2236-411: Is called a minimal pair for the two alternative phones in question (in this case, [kʰ] and [k] ). The existence of minimal pairs is a common test to decide whether two phones represent different phonemes or are allophones of the same phoneme. To take another example, the minimal pair t ip and d ip illustrates that in English, [t] and [d] belong to separate phonemes, /t/ and /d/ ; since
2322-419: Is found in individual languages such as Dizi and Bench; Historically, these are partly reflexes of affixes : The nominal morphology is based on a nominative - accusative - absolutive system; For verbal morphology , a complex inflection according to categories such as tense / aspect , interrogative - declarative and affirmative - negative as well as agreement is more predicative characterizing forms with
2408-505: Is generally predictable) and so it is not phonemic (and therefore not usually indicated in dictionaries). Phonemic tones are found in languages such as Mandarin Chinese in which a given syllable can have five different tonal pronunciations: The tone "phonemes" in such languages are sometimes called tonemes . Languages such as English do not have phonemic tone, but they use intonation for functions such as emphasis and attitude. When
2494-430: Is notoriously a fire in a wooden stove." This approach was opposed to that of Edward Sapir , who gave an important role to native speakers' intuitions about where a particular sound or group of sounds fitted into a pattern. Using English [ŋ] as an example, Sapir argued that, despite the superficial appearance that this sound belongs to a group of three nasal consonant phonemes (/m/, /n/ and /ŋ/), native speakers feel that
2580-408: Is often imperfect, as pronunciations naturally shift in a language over time, rendering previous spelling systems outdated or no longer closely representative of the sounds of the language (see § Correspondence between letters and phonemes below). A phoneme is a sound or a group of different sounds perceived to have the same function by speakers of the language or dialect in question. An example
2666-492: Is possible to discover the phonemes of a language purely by examining the distribution of phonetic segments. Referring to mentalistic definitions of the phoneme, Twaddell (1935) stated "Such a definition is invalid because (1) we have no right to guess about the linguistic workings of an inaccessible 'mind', and (2) we can secure no advantage from such guesses. The linguistic processes of the 'mind' as such are quite simply unobservable; and introspection about linguistic processes
Omotic languages - Misplaced Pages Continue
2752-412: Is that the sound spelled with the symbol t is usually articulated with a glottal stop [ʔ] (or a similar glottalized sound) in the word cat , an alveolar flap [ɾ] in dating , an alveolar plosive [t] in stick , and an aspirated alveolar plosive [tʰ] in tie ; however, American speakers perceive or "hear" all of these sounds (usually with no conscious effort) as merely being allophones of
2838-502: Is the English phoneme /k/ , which occurs in words such as c at , k it , s c at , s k it . Although most native speakers do not notice this, in most English dialects, the "c/k" sounds in these words are not identical: in kit [kʰɪt] , the sound is aspirated, but in skill [skɪl] , it is unaspirated. The words, therefore, contain different speech sounds , or phones , transcribed [kʰ] for
2924-584: Is the notation for a sequence of four phonemes, /p/ , /ʊ/ , /ʃ/ , and /t/ , that together constitute the word pushed . Sounds that are perceived as phonemes vary by languages and dialects, so that [ n ] and [ ŋ ] are separate phonemes in English since they distinguish words like sin from sing ( /sɪn/ versus /sɪŋ/ ), yet they comprise a single phoneme in some other languages, such as Spanish, in which [pan] and [paŋ] for instance are merely interpreted by Spanish speakers as regional or dialect-specific ways of pronouncing
3010-641: Is typical for the non-glottal plosives is that they are each represented by a voiced, a voiceless, and an ejective phoneme; All three types can also be found in fricatives and affricates. Most Omotic languages have additional consonants. Examples of this are the Implosive in South Omotic (/ɓ/, /ɗ/, /ɠ/) and the Retroflex of the Bench. In some cases, consonants can also occur geminated . Representatives of
3096-571: Is typologically unusual: The personal pronouns distinguish similar categories to the nouns in most omotic languages; However, the genera are usually only marked in the 3rd person singular. The personal pronouns usually have their own stem for each number-person-gender combination, to which case suffixes are then added, which are the same for all persons. Some of the pronouns show similarities with other Afro-Asian language families and can therefore be traced back to Proto-Afro-Asiatic; Certain South Omotic personal pronouns can be explained as borrowings from
3182-629: The Creative Commons Attribution 4.0 International License in 2024. It is part of the Cross-Linguistic Linked Data project hosted by the Max Planck Institute for the Science of Human History . Glottolog is more conservative in its classification than other databases in establishing membership of languages and families given its strict criteria for postulating larger groupings. On the other hand,
3268-774: The Kam–Sui languages have six to nine tones (depending on how they are counted), and the Kam-Sui Dong language has nine to 15 tones by the same measure. One of the Kru languages , Wobé , has been claimed to have 14, though this is disputed. The most common vowel system consists of the five vowels /i/, /e/, /a/, /o/, /u/ . The most common consonants are /p/, /t/, /k/, /m/, /n/ . Relatively few languages lack any of these consonants, although it does happen: for example, Arabic lacks /p/ , standard Hawaiian lacks /t/ , Mohawk and Tlingit lack /p/ and /m/ , Hupa lacks both /p/ and
3354-637: The Max Planck Institute for the Science of Human History in Jena , Germany. Its main curators include Harald Hammarström and Martin Haspelmath . Sebastian Nordhoff and Harald Hammarström established the Glottolog/Langdoc project in 2011. The creation of Glottolog was partly motivated by the lack of a comprehensive language bibliography, especially in Ethnologue . Glottolog provides
3440-524: The Prague school . Archiphonemes are often notated with a capital letter within double virgules or pipes, as with the examples //A// and //N// given above. Other ways the second of these has been notated include |m-n-ŋ| , {m, n, ŋ} and //n*// . Another example from English, but this time involving complete phonetic convergence as in the Russian example, is the flapping of /t/ and /d/ in some American English (described above under Biuniqueness ). Here
3526-610: The subject . In syntax, the word order subject-object-verb (SOV) is generally valid; Postpositions are used, which can be considered typical for both SOV languages in general and for the Ethiopian region. The Omotic languages have on average slightly less than thirty consonant phonemes , which is a comparatively high number, but is also found in other primary branches of Afro-Asiatic. Commonly used are bilabial , alveolar , velar and glottal plosive , various fricative , alveolar affricates and /w/, /y/, /l/, /r/, /m/, /n/. What
Omotic languages - Misplaced Pages Continue
3612-874: The ASL signs for father and mother differ minimally with respect to location while handshape and movement are identical; location is thus contrastive. Stokoe's terminology and notation system are no longer used by researchers to describe the phonemes of sign languages; William Stokoe 's research, while still considered seminal, has been found not to characterize American Sign Language or other sign languages sufficiently. For instance, non-manual features are not included in Stokoe's classification. More sophisticated models of sign language phonology have since been proposed by Brentari , Sandler , and Van der Kooij. Cherology and chereme (from Ancient Greek : χείρ "hand") are synonyms of phonology and phoneme previously used in
3698-730: The Afroasiatic language family at all, and Theil (2006) proposes that Omotic be treated as an independent family. However, the general consensus, based primarily on morphological evidence, such as pronominal prefixes, grammatical number and plural form , as well as prefix conjugation is that membership in Afroasiatic is well established. The Aroid (South Omotic) languages were first included in "West Cushitic" by Greenberg; they were excluded from earlier classifications by Italian Cushiticists such as Enrico Cerulli and Mario Martino Moreno, and their inclusion in Omotic remains contested. Hammarström, et al. in Glottolog does not consider Omotic to be
3784-604: The English Phonology article an alternative analysis is suggested in which some diphthongs and long vowels may be interpreted as comprising a short vowel linked to either / j / or / w / . The fullest exposition of this approach is found in Trager and Smith (1951), where all long vowels and diphthongs ("complex nuclei") are made up of a short vowel combined with either /j/ , /w/ or /h/ (plus /r/ for rhotic accents), each comprising two phonemes. The transcription for
3870-407: The English language. Specifically they are consonant phonemes, along with /s/ , while /ɛ/ is a vowel phoneme. The spelling of English does not strictly conform to its phonemes, so that the words knot , nut , and gnat , regardless of spelling, all share the consonant phonemes /n/ and /t/ , differing only by their internal vowel phonemes: /ɒ/ , /ʌ/ , and /æ/ , respectively. Similarly, /pʊʃt/
3956-460: The Mao languages, whose affiliation had originally been controversial, and in abolishing the "Gimojan" group. There are also differences in the subclassification of Ometo, which is not covered here. Hayward (2003) separates out the Mao languages as a third branch of Omotic and breaks up Ometo–Gimira: Blench (2006) gives a more agnostic classification: Bosha † is unclassified; Ethnologue lists it as
4042-616: The Nordomotic and Mao have five to six vowel phonemes , the quantity is partly a difference in meaning; In contrast, much more extensive vowel systems are typical for South Omotic. All Omotic languages for which sufficient data is available are tonal languages , which usually only distinguish two tones (high and low), some languages have more tones: Dizi distinguishes three, Bench six. Certain Omotic languages such as Aari and Ganza (Mao) have tonal accent systems in which each independent word has exactly one high tone, whereas in most languages
4128-462: The approach of underspecification would not attempt to assign [ə] to a specific phoneme in some or all of these cases, although it might be assigned to an archiphoneme, written something like //A// , which reflects the two neutralized phonemes in this position, or {a|o} , reflecting its unmerged values. A somewhat different example is found in English, with the three nasal phonemes /m, n, ŋ/ . In word-final position these all contrast, as shown by
4214-477: The appropriate environments) to be realized with the phone [ɾ] (an alveolar flap ). For example, the same flap sound may be heard in the words hi tt ing and bi dd ing , although it is intended to realize the phoneme /t/ in the first word and /d/ in the second. This appears to contradict biuniqueness. For further discussion of such cases, see the next section. Phonemes that are contrastive in certain environments may not be contrastive in all environments. In
4300-436: The aspirated form and [k] for the unaspirated one. These different sounds are nonetheless considered to belong to the same phoneme, because if a speaker used one instead of the other, the meaning of the word would not change: using the aspirated form [kʰ] in skill might sound odd, but the word would still be recognized. By contrast, some other sounds would cause a change in meaning if substituted: for example, substitution of
4386-511: The branch of linguistics known as phonology . The English words cell and set have the exact same sequence of sounds, except for being different in their final consonant sounds: thus, /sɛl/ versus /sɛt/ in the International Phonetic Alphabet (IPA), a writing system that can be used to represent phonemes. Since /l/ and /t/ alone distinguish certain words from others, they are each examples of phonemes of
SECTION 50
#17327767865364472-459: The contrast is lost, since both are reduced to the same sound, usually [ə] (for details, see vowel reduction in Russian ). In order to assign such an instance of [ə] to one of the phonemes /a/ and /o/ , it is necessary to consider morphological factors (such as which of the vowels occurs in other forms of the words, or which inflectional pattern is followed). In some cases even this may not provide an unambiguous answer. A description using
4558-447: The database is more permissive in terms of considering unclassified languages as isolates . Edition 4.8 lists 421 spoken language families and isolates as follows: Creoles are classified with the language that supplied their basic lexicon . In addition to the families and isolates listed above, Glottolog uses several non-genealogical families for various languages: Phonemes A phoneme ( / ˈ f oʊ n iː m / )
4644-428: The devisers of the alphabet chose not to represent the phonemic effect of vowel length. However, because changes in the spoken language are often not accompanied by changes in the established orthography (as well as other reasons, including dialect differences, the effects of morphophonology on orthography, and the use of foreign spellings for some loanwords ), the correspondence between spelling and pronunciation in
4730-544: The environments where they do not contrast, the contrast is said to be neutralized . In these positions it may become less clear which phoneme a given phone represents. Absolute neutralization is a phenomenon in which a segment of the underlying representation is not realized in any of its phonetic representations (surface forms). The term was introduced by Paul Kiparsky (1968), and contrasts with contextual neutralization where some phonemes are not contrastive in certain environments. Some phonologists prefer not to specify
4816-434: The following: Some phonotactic restrictions can alternatively be analyzed as cases of neutralization. See Neutralization and archiphonemes below, particularly the example of the occurrence of the three English nasals before stops. Biuniqueness is a requirement of classic structuralist phonemics. It means that a given phone , wherever it occurs, must unambiguously be assigned to one and only one phoneme. In other words,
4902-516: The idea of a cognitive or psycholinguistic function for the phoneme. Later, it was used and redefined in generative linguistics , most famously by Noam Chomsky and Morris Halle , and remains central to many accounts of the development of modern phonology . As a theoretical concept or model, though, it has been supplemented and even replaced by others. Some linguists (such as Roman Jakobson and Morris Halle ) proposed that phonemes may be further decomposable into features , such features being
4988-400: The language perceive two sounds as significantly different even if no exact minimal pair exists in the lexicon. It is challenging to find a minimal pair to distinguish English / ʃ / from / ʒ / , yet it seems uncontroversial to claim that the two consonants are distinct phonemes. The two words 'pressure' / ˈ p r ɛ ʃ ər / and 'pleasure' / ˈ p l ɛ ʒ ər / can serve as
5074-542: The mapping between phones and phonemes is required to be many-to-one rather than many-to-many . The notion of biuniqueness was controversial among some pre- generative linguists and was prominently challenged by Morris Halle and Noam Chomsky in the late 1950s and early 1960s. An example of the problems arising from the biuniqueness requirement is provided by the phenomenon of flapping in North American English . This may cause either /t/ or /d/ (in
5160-462: The meaning of a word. In those languages, therefore, the two sounds represent different phonemes. For example, in Icelandic , [kʰ] is the first sound of kátur , meaning "cheerful", but [k] is the first sound of gátur , meaning "riddles". Icelandic, therefore, has two separate phonemes /kʰ/ and /k/ . A pair of words like kátur and gátur (above) that differ only in one phone
5246-489: The minimal triplet sum /sʌm/ , sun /sʌn/ , sung /sʌŋ/ . However, before a stop such as /p, t, k/ (provided there is no morpheme boundary between them), only one of the nasals is possible in any given position: /m/ before /p/ , /n/ before /t/ or /d/ , and /ŋ/ before /k/ , as in limp, lint, link ( /lɪmp/ , /lɪnt/ , /lɪŋk/ ). The nasals are therefore not contrastive in these environments, and according to some theorists this makes it inappropriate to assign
SECTION 60
#17327767865365332-415: The nasal phones heard here to any one of the phonemes (even though, in this case, the phonetic evidence is unambiguous). Instead they may analyze these phonemes as belonging to a single archiphoneme, written something like //N// , and state the underlying representations of limp, lint, link to be //lɪNp//, //lɪNt//, //lɪNk// . This latter type of analysis is often associated with Nikolai Trubetzkoy of
5418-447: The neighboring Nilo-Saharan: The case endings of the personal pronouns and the nouns are usually identical: Possessive pronouns in particular have their own forms: Bender (1987: 33–35) reconstructs the following proto-forms for Proto-Omotic and Proto-North Omotic, the latter which is considered to have descended from Proto-Omotic. Sample basic vocabulary of 40 Omotic languages from Blažek (2008): Glottolog Glottolog
5504-649: The number of identifiably different sounds. Different languages vary considerably in the number of phonemes they have in their systems (although apparent variation may sometimes result from the different approaches taken by the linguists doing the analysis). The total phonemic inventory in languages varies from as few as 9–11 in Pirahã and 11 in Rotokas to as many as 141 in ǃXũ . The number of phonemically distinct vowels can be as low as two, as in Ubykh and Arrernte . At
5590-411: The omotic languages as accusative languages; other cases form various adverbial determinations. A number of omotic languages have an absolutive case, which marks the citation form and the direct object (examples from Wolaita): Some common case suffixes are: A typological peculiarity, which is also isolated within Omotic, is the person and gender dependency of the nominative in Bench (either - i ˧ or -
5676-564: The other extreme, the Bantu language Ngwe has 14 vowel qualities, 12 of which may occur long or short, making 26 oral vowels, plus six nasalized vowels, long and short, making a total of 38 vowels; while !Xóõ achieves 31 pure vowels, not counting its additional variation by vowel length, by varying the phonation . As regards consonant phonemes, Puinave and the Papuan language Tauade each have just seven, and Rotokas has only six. !Xóõ , on
5762-461: The other hand, has somewhere around 77, and Ubykh 81. The English language uses a rather large set of 13 to 21 vowel phonemes, including diphthongs, although its 22 to 26 consonants are close to average. Across all languages, the average number of consonant phonemes per language is about 22, while the average number of vowel phonemes is about 8. Some languages, such as French , have no phonemic tone or stress , while Cantonese and several of
5848-454: The phoneme /ʃ/ ). Also a single letter may represent two phonemes, as in English ⟨x⟩ representing /gz/ or /ks/ . There may also exist spelling/pronunciation rules (such as those for the pronunciation of ⟨c⟩ in Italian ) that further complicate the correspondence of letters to phonemes, although they need not affect the ability to predict the pronunciation from
5934-785: The phoneme, linguists have proposed other sorts of underlying objects, giving them names with the suffix -eme , such as morpheme and grapheme . These are sometimes called emic units . The latter term was first used by Kenneth Pike , who also generalized the concepts of emic and etic description (from phonemic and phonetic respectively) to applications outside linguistics. Languages do not generally allow words or syllables to be built of any arbitrary sequences of phonemes. There are phonotactic restrictions on which sequences of phonemes are possible and in which environments certain phonemes can occur. Phonemes that are significantly limited by such restrictions may be called restricted phonemes . In English, examples of such restrictions include
6020-418: The position expressed by Kenneth Pike : "There is only one accurate phonemic analysis for a given set of data", while others believed that different analyses, equally valid, could be made for the same data. Yuen Ren Chao (1934), in his article "The non-uniqueness of phonemic solutions of phonetic systems" stated "given the sounds of a language, there are usually more than one possible way of reducing them to
6106-425: The same period there was disagreement about the correct basis for a phonemic analysis. The structuralist position was that the analysis should be made purely on the basis of the sound elements and their distribution, with no reference to extraneous factors such as grammar, morphology or the intuitions of the native speaker; this position is strongly associated with Leonard Bloomfield . Zellig Harris claimed that it
6192-501: The same phoneme. However, they are so dissimilar phonetically that they are considered separate phonemes. A case like this shows that sometimes it is the systemic distinctions and not the lexical context which are decisive in establishing phonemes. This implies that the phoneme should be defined as the smallest phonological unit which is contrastive at a lexical level or distinctive at a systemic level. Phonologists have sometimes had recourse to "near minimal pairs" to show that speakers of
6278-618: The same word ( pan : the Spanish word for "bread"). Such spoken variations of a single phoneme are known by linguists as allophones . Linguists use slashes in the IPA to transcribe phonemes but square brackets to transcribe more precise pronunciation details, including allophones; they describe this basic distinction as phonemic versus phonetic . Thus, the pronunciation patterns of tap versus tab , or pat versus bat , can be represented phonemically and are written between slashes (including /p/ , /b/ , etc.), while nuances of exactly how
6364-513: The same, but one of the parameters changes. However, the absence of minimal pairs for a given pair of phones does not always mean that they belong to the same phoneme: they may be so dissimilar phonetically that it is unlikely for speakers to perceive them as the same sound. For example, English has no minimal pair for the sounds [h] (as in h at ) and [ŋ] (as in ba ng ), and the fact that they can be shown to be in complementary distribution could be used to argue for their being allophones of
6450-412: The sound [t] would produce the different word s t ill , and that sound must therefore be considered to represent a different phoneme (the phoneme /t/ ). The above shows that in English, [k] and [kʰ] are allophones of a single phoneme /k/ . In some languages, however, [kʰ] and [k] are perceived by native speakers as significantly different sounds, and substituting one for the other can change
6536-641: The spelling and vice versa, provided the rules are consistent. Sign language phonemes are bundles of articulation features. Stokoe was the first scholar to describe the phonemic system of ASL . He identified the bundles tab (elements of location, from Latin tabula ), dez (the handshape, from designator ), and sig (the motion, from signation ). Some researchers also discern ori (orientation), facial expression or mouthing . Just as with spoken languages, when features are combined, they create phonemes. As in spoken languages, sign languages have minimal pairs which differ in only one phoneme. For instance,
6622-442: The study of sign languages . A chereme , as the basic unit of signed communication, is functionally and psychologically equivalent to the phonemes of oral languages, and has been replaced by that term in the academic literature. Cherology , as the study of cheremes in language, is thus equivalent to phonology. The terms are not in use anymore. Instead, the terms phonology and phoneme (or distinctive feature ) are used to stress
6708-507: The surface form that is actually uttered and heard. Allophones each have technically different articulations inside particular words or particular environments within words , yet these differences do not create any meaningful distinctions. Alternatively, at least one of those articulations could be feasibly used in all such words with these words still being recognized as such by users of the language. An example in American English
6794-438: The tones are freely distributed. The Omotic languages distinguish between the nominal categories number , case , and definiteness . These categories are marked by different suffixes, which can be fusional or analytic depending on the language. The two genders in all omotic languages for which sufficient data are available are masculine and feminine ; they essentially correspond to natural gender. The case system distinguishes
6880-405: The true minimal constituents of language. Features overlap each other in time, as do suprasegmental phonemes in oral language and many phonemes in sign languages. Features could be characterized in different ways: Jakobson and colleagues defined them in acoustic terms, Chomsky and Halle used a predominantly articulatory basis, though retaining some acoustic features, while Ladefoged 's system
6966-403: The velar nasal is really the sequence [ŋɡ]/. The theory of generative phonology which emerged in the 1960s explicitly rejected the structuralist approach to phonology and favoured the mentalistic or cognitive view of Sapir. These topics are discussed further in English phonology#Controversial issues . Phonemes are considered to be the basis for alphabetic writing systems. In such systems
7052-554: The vowel normally transcribed /aɪ/ would instead be /aj/ , /aʊ/ would be /aw/ and /ɑː/ would be /ah/ , or /ar/ in a rhotic accent if there is an ⟨r⟩ in the spelling. It is also possible to treat English long vowels and diphthongs as combinations of two vowel phonemes, with long vowels treated as a sequence of two short vowels, so that 'palm' would be represented as /paam/. English can thus be said to have around seven vowel phonemes, or even six if schwa were treated as an allophone of /ʌ/ or of other short vowels. In
7138-417: The words betting and bedding might both be pronounced [ˈbɛɾɪŋ] . Under the generative grammar theory of linguistics, if a speaker applies such flapping consistently, morphological evidence (the pronunciation of the related forms bet and bed , for example) would reveal which phoneme the flap represents, once it is known which morpheme is being used. However, other theorists would prefer not to make such
7224-410: The words have different meanings, English-speakers must be conscious of the distinction between the two sounds. Signed languages, such as American Sign Language (ASL), also have minimal pairs, differing only in (exactly) one of the signs' parameters: handshape, movement, location, palm orientation, and nonmanual signal or marker. A minimal pair may exist in the signed language if the basic sign stays
7310-451: The written symbols ( graphemes ) represent, in principle, the phonemes of the language being written. This is most obviously the case when the alphabet was invented with a particular language in mind; for example, the Latin alphabet was devised for Classical Latin, and therefore the Latin of that period enjoyed a near one-to-one correspondence between phonemes and graphemes in most cases, though
7396-694: Was fonema , the basic unit of what they called psychophonetics . Daniel Jones became the first linguist in the western world to use the term phoneme in its current sense, employing the word in his article "The phonetic structure of the Sechuana Language". The concept of the phoneme was then elaborated in the works of Nikolai Trubetzkoy and others of the Prague School (during the years 1926–1935), and in those of structuralists like Ferdinand de Saussure , Edward Sapir , and Leonard Bloomfield . Some structuralists (though not Sapir) rejected
#535464