Misplaced Pages

W80 (nuclear warhead)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The AGM-129 ACM (Advanced Cruise Missile) was a low-observable , subsonic, turbofan -powered, air-launched cruise missile originally designed and built by General Dynamics and eventually acquired by Raytheon Missile Systems . Prior to its withdrawal from service in 2012, the AGM-129A was carried exclusively by the US Air Force 's B-52H Stratofortress bombers .

#625374

107-526: The W80 is a low to intermediate yield two-stage thermonuclear warhead deployed by the U.S. enduring stockpile with a variable yield ("dial-a-yield") of 5 or 150 kilotonnes of TNT (21 or 628 TJ). It was designed for deployment on cruise missiles and is the warhead used in all nuclear-armed ALCM and ACM missiles deployed by the US Air Force , and in the US Navy 's BGM-109 Tomahawk . It

214-410: A hohlraum or radiation case. The "George" shot of Operation Greenhouse of 9 May 1951 tested the basic concept for the first time on a very small scale. As the first successful (uncontrolled) release of nuclear fusion energy, which made up a small fraction of the 225  kt (940  TJ ) total yield, it raised expectations to a near certainty that the concept would work. On 1 November 1952,

321-736: A secondary section that consists of fusion fuel . The energy released by the primary compresses the secondary through the process of radiation implosion , at which point it is heated and undergoes nuclear fusion . This process could be continued, with energy from the secondary igniting a third fusion stage; the Soviet Union's AN602 " Tsar Bomba " is thought to have been a three-stage fission-fusion-fusion device. Theoretically by continuing this process thermonuclear weapons with arbitrarily high yield could be constructed. This contrasts with fission weapons, which are limited in yield because only so much fission fuel can be amassed in one place before

428-593: A classified cruise missile mission." However, Ozu states the AGM-129B was intended to be a non-nuclear version of the ACM, much as the nuclear AGM-86B led to the conventional AGM-86C . This role was instead filled by the AGM-158 JASSM . The B-52H bomber can carry up to six AGM-129A missiles on each of two external pylons for a total of 12 per aircraft. Originally, an additional 8 ACMs could be carried internally in

535-430: A design could not produce thermonuclear weapons whose explosive yields could be made arbitrarily large (unlike U.S. designs at that time). The fusion layer wrapped around the fission core could only moderately multiply the fission energy (modern Teller–Ulam designs can multiply it 30-fold). Additionally, the whole fusion stage had to be imploded by conventional explosives, along with the fission core, substantially increasing

642-498: A dozen megatons, which was generally considered enough to destroy even the most hardened practical targets (for example, a control facility such as the Cheyenne Mountain Complex ). Even such large bombs have been replaced by smaller yield nuclear bunker buster bombs. For destruction of cities and non-hardened targets, breaking the mass of a single missile payload down into smaller MIRV bombs in order to spread

749-456: A few specific incidents outlined in a section below. The basic principle of the Teller–Ulam configuration is the idea that different parts of a thermonuclear weapon can be chained together in stages, with the detonation of each stage providing the energy to ignite the next stage. At a minimum, this implies a primary section that consists of an implosion-type fission bomb (a "trigger"), and

856-453: A high-yield explosion. A W88 warhead manages to yield up to 475 kilotonnes of TNT (1,990 TJ) with a physics package 68.9 inches (1,750 mm) long, with a maximum diameter of 21.8 inches (550 mm), and by different estimates weighing in a range from 175 to 360 kilograms (386 to 794 lb). The smaller warhead allows more of them to fit onto a single missile and improves basic flight properties such as speed and range. The idea of

963-600: A life extension program (LEP) for the W80-1 was started and the LEP warhead was given the W80-4 designation. The warhead will be used on the new AGM-181 LRSO cruise missile. The first production unit is expected to be completed in 2027. According to public descriptions of the program, the warhead will offer no increased military capability, only refurbishing and updating components, and increasing weapon safety and reliability. In FY2022,

1070-488: A massive effort was mounted to re-invent the process. An impurity crucial to the properties of the old Fogbank was omitted during the new process. Only close analysis of new and old batches revealed the nature of that impurity. The manufacturing process used acetonitrile as a solvent , which led to at least three evacuations of the Fogbank plant in 2006. Widely used in the petroleum and pharmaceutical industries, acetonitrile

1177-411: A mission to transport cruise missiles for decommissioning. It was not discovered that the six missiles had nuclear warheads until the plane landed at Barksdale, leaving the warheads unaccounted for, for over 36 hours. 5th Bomb Wing failed its nuclear surety inspection in late May 2008. 2nd Bomb Wing from Barksdale Air Force Base took over the role until the wing was recertified on 15 August 2008. In 2014,

SECTION 10

#1732790629626

1284-399: A more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 ( U ) or plutonium-239 ( Pu ). The first full-scale thermonuclear test ( Ivy Mike )

1391-406: A period of high tension between the machinists' union and GDC management, with a 3 + 1 ⁄ 2 -week-long strike occurring in 1987. US Congressman Les Aspin called the ACM a procurement disaster with the worst problems of any of the eight strategic weapons programs his committee had reviewed. The US Congress zeroed out funding for the ACM program in 1989. Manufacturing 'quality' problems led

1498-576: A possibility. It was first used in thermonuclear weapons with the W76 thermonuclear warhead and produced at a plant in the Y-12 Complex at Oak Ridge, Tennessee , for use in the W76. Production of Fogbank lapsed after the W76 production run ended. The W76 Life Extension Program required more Fogbank to be made. This was complicated by the fact that the original Fogbank's properties were not fully documented, so

1605-600: A quoted figure of between 30 m (100 ft) and 90 m (300 ft). The AGM-129A, like the AGM-86B, is armed with a W80 -1 variable-yield nuclear warhead. The first test missile flew in July 1985, and the first production missiles were delivered to the US Air Force in 1987. The development program experienced some hardware 'quality control' problems and testing mishaps. The flight test program took place during

1712-485: A thermal barrier to keep the fusion fuel filler from becoming too hot, which would spoil the compression. If made of uranium , enriched uranium or plutonium, the tamper captures fast fusion neutrons and undergoes fission itself, increasing the overall explosive yield . Additionally, in most designs the radiation case is also constructed of a material that undergoes fission driven by fast thermonuclear neutrons. Such bombs are classified as two stage weapons. Fast fission of

1819-602: A thermonuclear fusion bomb ignited by a smaller fission bomb was first proposed by Enrico Fermi to his colleague Edward Teller when they were talking at Columbia University in September 1941, at the start of what would become the Manhattan Project . Teller spent much of the Manhattan Project attempting to figure out how to make the design work, preferring it over work on the atomic bomb, and over

1926-526: Is about the size of a conventional Mk.81 250-pound (110 kg) bomb, 11.8 inches (30 cm) in diameter and 31.4 inches (80 cm) long, and only slightly heavier at about 290 pounds (130 kg). The Los Alamos National Laboratory began development on the W80 in June 1976, with the brief of producing a custom weapon for the cruise missiles then under construction. With "the basic design" being derived from

2033-462: Is essentially a modification of the widely deployed B61 weapon, which forms the basis of most of the current US stockpile of nuclear gravity bombs. The very similar W84 warhead was deployed on the retired BGM-109G Ground Launched Cruise Missile . It was designed at Los Alamos National Laboratory in Los Alamos, New Mexico . The W80 is physically quite small: the physics package itself

2140-461: Is flammable and toxic. Y-12 is the sole producer of Fogbank. A simplified summary of the above explanation is: How exactly the energy is "transported" from the primary to the secondary has been the subject of some disagreement in the open press but is thought to be transmitted through the X-rays and gamma rays that are emitted from the fissioning primary . This energy is then used to compress

2247-559: Is industry parlance for plutonium alloy bearing an exceptionally high fraction of Pu-239 (>95%), leaving a very low amount of Pu-240 which is a gamma emitter in addition to being a high spontaneous fission isotope . Such plutonium is produced from fuel rods that have been irradiated a very short time as measured in MW-Day/Ton burnup . Such low irradiation times limit the amount of additional neutron capture and therefore buildup of alternate isotope products such as Pu-240 in

SECTION 20

#1732790629626

2354-487: Is omitted, by replacing the uranium tamper with one made of lead , for example, the overall explosive force is reduced by approximately half but the amount of fallout is relatively low. The neutron bomb is a hydrogen bomb with an intentionally thin tamper, allowing as many of the fast fusion neutrons as possible to escape. Current technical criticisms of the idea of "foam plasma pressure" focus on unclassified analysis from similar high energy physics fields that indicate that

2461-529: Is one order of magnitude greater than the higher proposed plasma pressures and nearly two orders of magnitude greater than calculated radiation pressure. No mechanism to avoid the absorption of energy into the radiation case wall and the secondary tamper has been suggested, making ablation apparently unavoidable. The other mechanisms appear to be unneeded. United States Department of Defense official declassification reports indicate that foamed plastic materials are or may be used in radiation case liners, and despite

2568-515: Is the Soviet early Sloika design. In essence, the Teller–Ulam configuration relies on at least two instances of implosion occurring: first, the conventional (chemical) explosives in the primary would compress the fissile core, resulting in a fission explosion many times more powerful than that which chemical explosives could achieve alone (first stage). Second, the radiation from the fissioning of

2675-426: Is the fusion fuel, usually a form of lithium deuteride , which is used because it is easier to weaponize than liquefied tritium/deuterium gas. This dry fuel, when bombarded by neutrons, produces tritium, a heavy isotope of hydrogen that can undergo nuclear fusion, along with the deuterium present in the mixture. (See the article on nuclear fusion for a more detailed technical discussion of fusion reactions.) Inside

2782-446: Is the medium by which the outside pressure (force acting on the surface area of the secondary) is transferred to the mass of fusion fuel. The proposed tamper-pusher ablation mechanism posits that the outer layers of the thermonuclear secondary's tamper-pusher are heated so extremely by the primary's X-ray flux that they expand violently and ablate away (fly off). Because total momentum is conserved, this mass of high velocity ejecta impels

2889-416: Is the primary example). Such processes have resulted in a body of unclassified knowledge about nuclear bombs that is generally consistent with official unclassified information releases and related physics and is thought to be internally consistent, though there are some points of interpretation that are still considered open. The state of public knowledge about the Teller–Ulam design has been mostly shaped from

2996-552: Is thought to be a standard implosion method fission bomb, though likely with a core boosted by small amounts of fusion fuel (usually 1:1 deuterium : tritium gas) for extra efficiency; the fusion fuel releases excess neutrons when heated and compressed, inducing additional fission. When fired, the Pu or U core would be compressed to a smaller sphere by special layers of conventional high explosives arranged around it in an explosive lens pattern, initiating

3103-495: Is thought to have used multiple stages (including more than one tertiary fusion stage) in their 50 Mt (210 PJ) (100 Mt (420 PJ) in intended use) Tsar Bomba. The fissionable jacket could be replaced with lead, as was done with the Tsar Bomba. If any hydrogen bombs have been made from configurations other than those based on the Teller–Ulam design, the fact of it is not publicly known. A possible exception to this

3210-409: Is widely assumed to be beryllium , which fits that description and would also moderate the neutron flux from the primary. Some material to absorb and re-radiate the X-rays in a particular manner may also be used. Candidates for the "special material" are polystyrene and a substance called " Fogbank ", an unclassified codename. Fogbank's composition is classified, though aerogel has been suggested as

3317-531: The B61 . The main design differences are presumably a smaller secondary producing only 150 kilotonnes of TNT (630 TJ) yield (the B61 producing a maximum of 170 kilotonnes of TNT (710 TJ) in the tactical variants and 340 kilotonnes of TNT (1,400 TJ) in the strategic variants) and simplification of the design giving the weapon only two yield settings; 5 and 150 kilotonnes of TNT (21 and 628 TJ). Production of

W80 (nuclear warhead) - Misplaced Pages Continue

3424-648: The B61-based line , and production of all weapons was suspended while a solution was worked on. Production restarted in February 1982. In March 1982, designers began working on a W80 variant intended for the Navy's Tomahawk program. The W80 mod 0 ( W80-0 ) used "supergrade" fission fuel, which has less radioactivity, in the primary in place of the conventional plutonium used in the Air Force's version. "Supergrade"

3531-453: The CALCM conversion. Under START II only 400 ACMs would have retained their nuclear warheads, and the rest would have been converted to CALCMs and their warheads removed to the inactive stockpile. On August 30, 2007, six cruise missiles armed with W80-1 warheads were mistakenly loaded onto a B-52 and flown from Minot Air Force Base , North Dakota, to Barksdale Air Force Base , Louisiana, on

3638-570: The Trident II SLBM, had a prolate primary (code-named Komodo ) and a spherical secondary (code-named Cursa ) inside a specially shaped radiation case (known as the "peanut" for its shape). The value of an egg-shaped primary lies apparently in the fact that a MIRV warhead is limited by the diameter of the primary: if an egg-shaped primary can be made to work properly, then the MIRV warhead can be made considerably smaller yet still deliver

3745-612: The W-80 the gas expansion velocity is roughly 410 km/s (41 cm/μs) and the implosion velocity 570 km/s (57 cm/μs). The pressure due to the ablating material is calculated to be 5.3  billion bars (530  trillion pascals ) in the Ivy Mike device and 64 billion bars (6.4 quadrillion pascals) in the W-80 device. Comparing the three mechanisms proposed, it can be seen that: The calculated ablation pressure

3852-547: The W47 warhead deployed on Polaris ballistic missile submarines , megaton-class warheads were as small as 18 inches (0.46 m) in diameter and 720 pounds (330 kg) in weight. Further innovation in miniaturizing warheads was accomplished by the mid-1970s, when versions of the Teller–Ulam design were created that could fit ten or more warheads on the end of a small MIRVed missile. The first Soviet fusion design, developed by Andrei Sakharov and Vitaly Ginzburg in 1949 (before

3959-618: The W80 mod 1 ( W80-1 ) to arm the ALCM started in January 1979, and a number of warheads had been completed by January 1981 when the first low-temperature test was carried out. To everyone's surprise the test delivered a much lower yield than was expected, apparently due to problems in the TATB based insensitive high explosives used to fire the primary. This problem turned out to affect several models of

4066-489: The airborne early warning systems, together with the Zaslon PESA radar on MiG-31 and Myech radar on Su-27 interceptors, all three " look-down/shoot-down " radars, reduced the likelihood that the low-altitude AGM-86B would reach its target. The solution was to incorporate various "low-observable" ('stealth') technologies into a new Advanced Cruise Missile system. In 1983 General Dynamics Convair Division (GD/C)

4173-617: The infrared signature of the missile. To reduce electronic emissions from the missile, the radar used in the AGM-86B was replaced with a combination of inertial navigation and terrain contour matching ( TERCOM ) enhanced with highly accurate speed updates provided by a Lidar Doppler velocimeter . These changes made the AGM-129A more difficult to detect and allowed the missile to be flown at higher altitude. The newer Williams International F112-WR-100 turbofan engine increased range by about 50%. The newer guidance system increased accuracy to

4280-558: The neutron flux from the primary to prematurely begin heating the secondary, weakening the compression enough to prevent any fusion. There is very little detailed information in the open literature about the mechanism of the interstage. One of the best sources is a simplified diagram of a British thermonuclear weapon similar to the American W80 warhead. It was released by Greenpeace in a report titled "Dual Use Nuclear Technology" . The major components and their arrangement are in

4387-408: The nuclear chain reaction that powers the conventional "atomic bomb". The secondary is usually shown as a column of fusion fuel and other components wrapped in many layers. Around the column is first a "pusher- tamper ", a heavy layer of uranium-238 ( U ) or lead that helps compress the fusion fuel (and, in the case of uranium, may eventually undergo fission itself). Inside this

W80 (nuclear warhead) - Misplaced Pages Continue

4494-460: The secondary . The crucial detail of how the X-rays create the pressure is the main remaining disputed point in the unclassified press. There are three proposed theories: The radiation pressure exerted by the large quantity of X-ray photons inside the closed casing might be enough to compress the secondary. Electromagnetic radiation such as X-rays or light carries momentum and exerts a force on any surface it strikes. The pressure of radiation at

4601-505: The ACM chosen because it has reliability issues and higher maintenance costs. In March 2007, despite a Service Life Extension program (SLEP) intended to extend its operational usefulness to 2030, the USAF made the final decision to decommission its entire inventory of AGM-129s with the last missile being destroyed in April 2012. On August 30, 2007, twelve ACMs loaded on a B-52 were flown across

4708-581: The B-52 on Common Strategic Rotary Launchers, for a total of 20 per aircraft. The B-1B bomber was also slated to carry the AGM-129A, but that plan was ended after the cessation of the Cold War. The AGM-129A provides the B-52H bomber the ability to attack multiple targets without penetrating an air defense system. An AGM-129A impacted and damaged two unoccupied trailers, part of a cosmic ray observatory operated by

4815-644: The British fusion bomb, with Sir William Penney in charge of the project. British knowledge on how to make a thermonuclear fusion bomb was rudimentary, and at the time the United States was not exchanging any nuclear knowledge because of the Atomic Energy Act of 1946 . The United Kingdom had worked closely with the Americans on the Manhattan Project. British access to nuclear weapons information

4922-629: The National Nuclear Security Administration requested funding for the W80-4 ALT-SLCM variant of the warhead, for use on a new US Navy sea-launched cruise missile to be deployed in the late 2020s. Thermonuclear warhead A thermonuclear weapon , fusion weapon or hydrogen bomb ( H bomb ) is a second-generation nuclear weapon design . Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs ,

5029-526: The Soviet Union, United Kingdom, France, China and India. The thermonuclear Tsar Bomba was the most powerful bomb ever detonated. As thermonuclear weapons represent the most efficient design for weapon energy yield in weapons with yields above 50 kilotons of TNT (210 TJ), virtually all the nuclear weapons of this size deployed by the five nuclear-weapon states under the Non-Proliferation Treaty today are thermonuclear weapons using

5136-530: The Soviets had a working fission bomb), was dubbed the Sloika , after a Russian layer cake , and was not of the Teller–Ulam configuration. It used alternating layers of fissile material and lithium deuteride fusion fuel spiked with tritium (this was later dubbed Sakharov's "First Idea"). Though nuclear fusion might have been technically achievable, it did not have the scaling property of a "staged" weapon. Thus, such

5243-498: The Soviets searched for an alternative design. The "Second Idea", as Sakharov referred to it in his memoirs, was a previous proposal by Ginzburg in November 1948 to use lithium deuteride in the bomb, which would, in the course of being bombarded by neutrons, produce tritium and free deuterium. In late 1953 physicist Viktor Davidenko achieved the first breakthrough of staging the reactions. The next breakthrough of radiation implosion

5350-673: The Teller–Ulam configuration was tested at full scale in the "Ivy Mike" shot at an island in the Enewetak Atoll , with a yield of 10.4  Mt (44  PJ ) (over 450 times more powerful than the bomb dropped on Nagasaki during World War II ). The device, dubbed the Sausage , used an extra-large fission bomb as a "trigger" and liquid deuterium—kept in its liquid state by 20 short tons (18  t ) of cryogenic equipment—as its fusion fuel, and weighed around 80 short tons (73  t ) altogether. The liquid deuterium fuel of Ivy Mike

5457-429: The Teller–Ulam design. Detailed knowledge of fission and fusion weapons is classified to some degree in virtually every industrialized country . In the United States, such knowledge can by default be classified as " Restricted Data ", even if it is created by persons who are not government employees or associated with weapons programs, in a legal doctrine known as " born secret " (though the constitutional standing of

SECTION 50

#1732790629626

5564-435: The U.S. and Soviets, achieving only approximately 300 kt (1,300 TJ). The second test Orange Herald was the modified fission bomb and produced 720 kt (3,000 TJ)—making it the largest fission explosion ever. At the time almost everyone (including the pilots of the plane that dropped it) thought that this was a fusion bomb. This bomb was put into service in 1958. A second prototype fusion bomb, Purple Granite ,

5671-493: The U.S. government has attempted to censor weapons information in the public press , with limited success. According to the New York Times , physicist Kenneth W. Ford defied government orders to remove classified information from his book Building the H Bomb: A Personal History . Ford claims he used only pre-existing information and even submitted a manuscript to the government, which wanted to remove entire sections of

5778-490: The US Air Force to stop missile deliveries in 1989 and 1991. McDonnell Douglas was invited to qualify as a second source for missile production. In early 1989, the United States requested and received permission to test the AGM-129A in Canada. Plans called for producing enough missiles to replace the approximately 1,461 AGM-86B's at a rate of 200 missiles per year after full-rate production was achieved in 1993. In January 1992,

5885-630: The University of Utah and Tokyo University, located in the "hazardous operations" area of the United States Army Dugway Proving Ground on December 10, 1997. The AGM-129A was released over the Utah Test and Training Range from a B-52H bomber assigned to Minot Air Force Base , North Dakota . The missile had flown for approximately 3.5 hours on its planned route and had fulfilled all test objectives prior to

5992-500: The W80 was completed by September 1990, although the exact date at which the respective Mod 0 and Mod 1 runs ended is not clear. A total of 1750 Mod 1 and 367 Mod 0 devices were delivered; 1,000 Mod 1 devices were deployed on the original ALCM, another 400 on the later ACM , and 350 Mod 0s on the Tomahawk. Some of the original ALCMs would later have their mod 1 warheads removed and instead be fitted with conventional warheads producing

6099-494: The X-ray energy impinging on its pusher/ tamper. This compresses the entire secondary stage and drives up the density of the plutonium spark plug. The density of the plutonium fuel rises to such an extent that the spark plug is driven into a supercritical state, and it begins a nuclear fission chain reaction . The fission products of this chain reaction heat the highly compressed (and thus super dense) thermonuclear fuel surrounding

6206-411: The amount of chemical explosives needed. The first Sloika design test, RDS-6s , was detonated in 1953 with a yield equivalent to 400 kt (1,700 TJ) ( 15%- 20% from fusion). Attempts to use a Sloika design to achieve megaton-range results proved unfeasible. After the United States tested the "Ivy Mike" thermonuclear device in November 1952, proving that a multimegaton bomb could be created,

6313-446: The book for concern that foreign states could use the information. Though large quantities of vague data have been officially released—and larger quantities of vague data have been unofficially leaked by former bomb designers—most public descriptions of nuclear weapon design details rely to some degree on speculation, reverse engineering from known information, or comparison with similar fields of physics ( inertial confinement fusion

6420-481: The casing to a plasma, which then re-radiated radiation into the secondary's pusher, causing its surface to ablate and driving it inwards, compressing the secondary, igniting the sparkplug, and causing the fusion reaction. The general applicability of this principle is unclear. In 1999 a reporter for the San Jose Mercury News reported that the U.S. W88 nuclear warhead, a small MIRVed warhead used on

6527-440: The casing's circumference. The neutron guns are tilted so the neutron emitting end of each gun end is pointed towards the central axis of the bomb. Neutrons from each neutron gun pass through and are focused by the neutron focus lens towards the centre of primary in order to boost the initial fissioning of the plutonium. A " polystyrene Polarizer/Plasma Source" is also shown (see below). The first U.S. government document to mention

SECTION 60

#1732790629626

6634-412: The conditions needed for fusion, and the idea of staging or placing a separate thermonuclear component outside a fission primary component, and somehow using the primary to compress the secondary. Teller then realized that the gamma and X-ray radiation produced in the primary could transfer enough energy into the secondary to create a successful implosion and fusion burn, if the whole assembly was wrapped in

6741-523: The danger of its accidentally becoming supercritical becomes too great. Surrounding the other components is a hohlraum or radiation case , a container that traps the first stage or primary's energy inside temporarily. The outside of this radiation case, which is also normally the outside casing of the bomb, is the only direct visual evidence publicly available of any thermonuclear bomb component's configuration. Numerous photographs of various thermonuclear bomb exteriors have been declassified. The primary

6848-416: The decision to go forward with the development of the new weapon. Teller and other U.S. physicists struggled to find a workable design. Stanislaw Ulam , a co-worker of Teller, made the first key conceptual leaps towards a workable fusion design. Ulam's two innovations that rendered the fusion bomb practical were that compression of the thermonuclear fuel before extreme heating was a practical path towards

6955-424: The diagram, though details are almost absent; what scattered details it does include likely have intentional omissions or inaccuracies. They are labeled "End-cap and Neutron Focus Lens" and "Reflector Wrap"; the former channels neutrons to the U / Pu Spark Plug while the latter refers to an X-ray reflector; typically a cylinder made of an X-ray opaque material such as uranium with

7062-479: The doctrine has been at times called into question; see United States v. Progressive, Inc. ). Born secret is rarely invoked for cases of private speculation. The official policy of the United States Department of Energy has been not to acknowledge the leaking of design information, as such acknowledgment would potentially validate the information as accurate. In a small number of prior cases,

7169-414: The effects of that absorbed energy led to the third mechanism: ablation . The outer casing of the secondary assembly is called the "tamper-pusher". The purpose of a tamper in an implosion bomb is to delay the expansion of the reacting fuel supply (which is very hot dense plasma) until the fuel is fully consumed and the explosion runs to completion. The same tamper material serves also as a pusher in that it

7276-486: The end of the Cold War led US President George H. W. Bush to announce a major cutback in total ACM procurement. The President determined that only 640 missiles were needed. The ACM program was later reduced still further to 460 missiles. In August 1992 General Dynamics sold its missile business to Hughes Aircraft Corporation. Five years later in 1997, Hughes Aircraft Corporation sold its aerospace and defense business to

7383-512: The energy of the explosions into a "pancake" area is far more efficient in terms of area-destruction per unit of bomb energy. This also applies to single bombs deliverable by cruise missile or other system, such as a bomber, resulting in most operational warheads in the U.S. program having yields of less than 500 kt (2,100 TJ). In his 1995 book Dark Sun: The Making of the Hydrogen Bomb , author Richard Rhodes describes in detail

7490-519: The far more powerful Super. The debate covered matters that were alternatively strategic, pragmatic, and moral. In their Report of the General Advisory Committee, Robert Oppenheimer and colleagues concluded that "[t]he extreme danger to mankind inherent in the proposal [to develop thermonuclear weapons] wholly outweighs any military advantage." Despite the objections raised, on 31 January 1950, President Harry S. Truman made

7597-473: The final production contractor Raytheon . The US Air Force pushed for production of a AGM-129B variant for targets for which the AGM-129A was considered ineffective. The US Air Force submitted this requirement in 1985 and proposed to modify 120 missiles into the AGM-129B variant. In 1991 the US Congress denied the request and the US Air Force was forced to terminate the program. In 1992, the US Air Force

7704-436: The fissioning of the final natural uranium tamper, something that could not normally be achieved without the neutron flux provided by the fusion reactions in secondary or tertiary stages. Such designs are suggested to be capable of being scaled up to an arbitrary large yield (with apparently as many fusion stages as desired), potentially to the level of a " doomsday device ." However, usually such weapons were not more than

7811-504: The gap between the Neutron Focus Lens (in the center) and the outer casing near the primary. It separates the primary from the secondary and performs the same function as the previous reflector. There are about six neutron guns (seen here from Sandia National Laboratories ) each protruding through the outer edge of the reflector with one end in each section; all are clamped to the carriage and arranged more or less evenly around

7918-462: The intensities seen in everyday life, such as sunlight striking a surface, is usually imperceptible, but at the extreme intensities found in a thermonuclear bomb the pressure is enormous. For two thermonuclear bombs for which the general size and primary characteristics are well understood, the Ivy Mike test bomb and the modern W-80 cruise missile warhead variant of the W-61 design, the radiation pressure

8025-420: The internal components of the "Ivy Mike" Sausage device, based on information obtained from extensive interviews with the scientists and engineers who assembled it. According to Rhodes, the actual mechanism for the compression of the secondary was a combination of the radiation pressure, foam plasma pressure, and tamper-pusher ablation theories; the radiation from the primary heated the polyethylene foam lining of

8132-504: The interstage was only recently released to the public promoting the 2004 initiation of the Reliable Replacement Warhead (RRW) Program. A graphic includes blurbs describing the potential advantage of a RRW on a part-by-part level, with the interstage blurb saying a new design would replace "toxic, brittle material" and "expensive 'special' material... [that require] unique facilities". The "toxic, brittle material"

8239-581: The last year of the project he was assigned exclusively to the task. However once World War II ended, there was little impetus to devote many resources to the Super , as it was then known. The first atomic bomb test by the Soviet Union in August 1949 came earlier than expected by Americans, and over the next several months there was an intense debate within the U.S. government, military, and scientific communities regarding whether to proceed with development of

8346-415: The layer of fuel is the " spark plug ", a hollow column of fissile material ( Pu or U ) often boosted by deuterium gas. The spark plug, when compressed, can undergo nuclear fission (because of the shape, it is not a critical mass without compression). The tertiary, if one is present, would be set below the secondary and probably be made of the same materials. Separating

8453-432: The low direct plasma pressure they may be of use in delaying the ablation until energy has distributed evenly and a sufficient fraction has reached the secondary's tamper/pusher. Richard Rhodes ' book Dark Sun stated that a 1-inch-thick (25 mm) layer of plastic foam was fixed to the lead liner of the inside of the Ivy Mike steel casing using copper nails. Rhodes quotes several designers of that bomb explaining that

8560-522: The mishap. The missile was carrying an inert test payload. Mission planners were unaware of the existence of the trailers. The Air Force in 2008 maintained an arsenal of 1,140 AGM-86 ALCMs and 460 AGM-129 ACMs. The B-52 is the only platform for these missiles. The reductions also include all but 528 nuclear-armed ALCMs and are in part a result of the SORT/Moscow Treaty (2002) requirement to get below 2,200 deployed nuclear weapons by 2012, with

8667-424: The outer radiation case, with the components coming to a thermal equilibrium , and the effects of that thermal energy are then analyzed. The energy is mostly deposited within about one X-ray optical thickness of the tamper/pusher outer surface, and the temperature of that layer can then be calculated. The velocity at which the surface then expands outwards is calculated and, from a basic Newtonian momentum balance,

8774-438: The plastic foam layer inside the outer case is to delay ablation and thus recoil of the outer case: if the foam were not there, metal would ablate from the inside of the outer case with a large impulse, causing the casing to recoil outwards rapidly. The purpose of the casing is to contain the explosion for as long as possible, allowing as much X-ray ablation of the metallic surface of the secondary stage as possible, so it compresses

8881-413: The pressure produced by such a plasma would only be a small multiplier of the basic photon pressure within the radiation case, and also that the known foam materials intrinsically have a very low absorption efficiency of the gamma ray and X-ray radiation from the primary. Most of the energy produced would be absorbed by either the walls of the radiation case or the tamper around the secondary. Analyzing

8988-519: The primary and secondary assemblies placed within an enclosure called a radiation case, which confines the X-ray energy and resists its outward pressure. The distance separating the two assemblies ensures that debris fragments from the fission primary (which move much more slowly than X-ray photons ) cannot disassemble the secondary before the fusion explosion runs to completion. The secondary fusion stage—consisting of outer pusher/ tamper , fusion fuel filler and central plutonium spark plug—is imploded by

9095-442: The primary and secondary at either end. It does not reflect like a mirror; instead, it gets heated to a high temperature by the X-ray flux from the primary, then it emits more evenly spread X-rays that travel to the secondary, causing what is known as radiation implosion . In Ivy Mike , gold was used as a coating over the uranium to enhance the blackbody effect. Next comes the "Reflector/Neutron Gun Carriage". The reflector seals

9202-425: The primary would be used to compress and ignite the secondary fusion stage, resulting in a fusion explosion many times more powerful than the fission explosion alone. This chain of compression could conceivably be continued with an arbitrary number of tertiary fusion stages, each igniting more fusion fuel in the next stage although this is debated. Finally, efficient bombs (but not so-called neutron bombs ) end with

9309-448: The pure element or in modern weapons lithium deuteride . For this reason, thermonuclear weapons are often colloquially called hydrogen bombs or H-bombs . A fusion explosion begins with the detonation of the fission primary stage. Its temperature soars past 100 million kelvin , causing it to glow intensely with thermal ("soft") X-rays . These X-rays flood the void (the "radiation channel" often filled with polystyrene foam ) between

9416-418: The rest of the tamper-pusher to recoil inwards with tremendous force, crushing the fusion fuel and the spark plug. The tamper-pusher is built robustly enough to insulate the fusion fuel from the extreme heat outside; otherwise, the compression would be spoiled. Rough calculations for the basic ablation effect are relatively simple: the energy from the primary is distributed evenly onto all of the surfaces within

9523-602: The rod, and also by consequence is considerably more expensive to produce, needing far more rods irradiated and processed for a given amount of plutonium. Submarine crew members routinely operate in proximity to stored weapons in torpedo rooms, in contrast to the air force where exposure to warheads is relatively brief. The first models were delivered in December 1983 and the Mod 0 went into full production in March 1984. Production of

9630-450: The secondary efficiently, maximizing the fusion yield. Plastic foam has a low density, so causes a smaller impulse when it ablates than metal does. Possible variations to the weapon design have been proposed: Most bombs do not apparently have tertiary "stages"—that is, third compression stage(s), which are additional fusion stages compressed by a previous fusion stage. The fissioning of the last blanket of uranium, which provides about half

9737-422: The secondary from the primary is the interstage . The fissioning primary produces four types of energy: 1) expanding hot gases from high explosive charges that implode the primary; 2) superheated plasma that was originally the bomb's fissile material and its tamper; 3) the electromagnetic radiation ; and 4) the neutrons from the primary's nuclear detonation. The interstage is responsible for accurately modulating

9844-594: The secondary stages by radiation implosion. Because of these difficulties, in 1955 Prime Minister Anthony Eden agreed to a secret plan, whereby if the Aldermaston scientists failed or were greatly delayed in developing the fusion bomb, it would be replaced by an extremely large fission bomb. In 1957 the Operation Grapple tests were carried out. The first test, Green Granite, was a prototype fusion bomb that failed to produce equivalent yields compared to

9951-418: The spark plug to around 300 million kelvin, igniting fusion reactions between fusion fuel nuclei. In modern weapons fueled by lithium deuteride, the fissioning plutonium spark plug also emits free neutrons that collide with lithium nuclei and supply the tritium component of the thermonuclear fuel. The secondary's relatively massive tamper (which resists outward expansion as the explosion proceeds) also serves as

10058-407: The tamper and radiation case is the main contribution to the total yield and is the dominant process that produces radioactive fission product fallout . Before Ivy Mike, Operation Greenhouse in 1951 was the first American nuclear test series to test principles that led to the development of thermonuclear weapons. Sufficient fission was achieved to boost the associated fusion device, and enough

10165-404: The transfer of energy from the primary to the secondary. It must direct the hot gases, plasma, electromagnetic radiation and neutrons toward the right place at the right time. Less than optimal interstage designs have resulted in the secondary failing to work entirely on multiple shots, known as a " fissile fizzle ". The Castle Koon shot of Operation Castle is a good example; a small flaw allowed

10272-412: The velocity at which the rest of the tamper implodes inwards. Applying the more detailed form of those calculations to the Ivy Mike device yields vaporized pusher gas expansion velocity of 290 kilometres per second (29 cm/μs) and an implosion velocity of perhaps 400 km/s (40 cm/μs) if + 3 ⁄ 4 of the total tamper/pusher mass is ablated off, the most energy efficient proportion. For

10379-404: The weapon (with the foam) would be as follows: This would complete the fission-fusion-fission sequence. Fusion, unlike fission, is relatively "clean"—it releases energy but no harmful radioactive products or large amounts of nuclear fallout . The fission reactions though, especially the last fission reactions, release a tremendous amount of fission products and fallout. If the last fission stage

10486-500: The yield in large bombs, does not count as a "stage" in this terminology. The U.S. tested three-stage bombs in several explosions during Operation Redwing but is thought to have fielded only one such tertiary model, i.e., a bomb in which a fission stage, followed by a fusion stage, finally compresses yet another fusion stage. This U.S. design was the heavy but highly efficient (i.e., nuclear weapon yield per unit bomb weight) 25 Mt (100 PJ) B41 nuclear bomb . The Soviet Union

10593-419: Was awarded a development contract for the AGM-129A (the losing design was Lockheed Corporation 's Senior Prom ). The AGM-129A incorporated body shaping and forward swept wings to reduce the missile's radar cross section . The engine air intake was flush mounted on the bottom of the missile to further improve radar cross section. The jet engine exhaust was shielded by the tail and cooled by a diffuser to reduce

10700-486: Was calculated to be 73 × 10 ^   bar (7.3  TPa ) for the Ivy Mike design and 1,400 × 10 ^   bar (140  TPa ) for the W-80. Foam plasma pressure is the concept that Chuck Hansen introduced during the Progressive case, based on research that located declassified documents listing special foams as liner components within the radiation case of thermonuclear weapons. The sequence of firing

10807-451: Was carried out by the United States in 1952, and the concept has since been employed by most of the world's nuclear powers in the design of their weapons. Modern fusion weapons essentially consist of two main components: a nuclear fission primary stage (fueled by U or Pu ) and a separate nuclear fusion secondary stage containing thermonuclear fuel: heavy isotopes of hydrogen ( deuterium and tritium ) as

10914-415: Was cut off by the United States at one point due to concerns about Soviet espionage. Full cooperation was not reestablished until an agreement governing the handling of secret information and other issues was signed. However, the British were allowed to observe the U.S. Castle tests and used sampling aircraft in the mushroom clouds , providing them with clear, direct evidence of the compression produced in

11021-678: Was directed by the US Department of Defense to restart the program, an effort which was opposed by the General Accounting Office of the US Congress . Confusion exists as to precisely how this weapon is different from the original. The Department of Defense document DoD 4120.15-L "Model Designation of Military Aerospace Vehicles" states that the AGM-129B was an AGM-129A "modified with structural and software changes and an alternate nuclear warhead for accomplishing

11128-604: Was discovered and developed by Sakharov and Yakov Zel'dovich in early 1954. Sakharov's "Third Idea", as the Teller–Ulam design was known in the USSR, was tested in the shot " RDS-37 " in November 1955 with a yield of 1.6 Mt (6.7 PJ). The Soviets demonstrated the power of the staging concept in October 1961, when they detonated the massive and unwieldy Tsar Bomba. It was the largest nuclear weapon developed and tested by any country. In 1954 work began at Aldermaston to develop

11235-509: Was impractical for a deployable weapon, and the next advance was to use a solid lithium deuteride fusion fuel instead. In 1954 this was tested in the " Castle Bravo " shot (the device was code-named Shrimp ), which had a yield of 15  Mt (63  PJ ) (2.5 times expected) and is the largest U.S. bomb ever tested. Efforts shifted towards developing miniaturized Teller–Ulam weapons that could fit into intercontinental ballistic missiles and submarine-launched ballistic missiles . By 1960, with

11342-463: Was learned to achieve a full-scale device within a year. The design of all modern thermonuclear weapons in the United States is known as the Teller–Ulam configuration for its two chief contributors, Edward Teller and Stanisław Ulam , who developed it in 1951 for the United States, with certain concepts developed with the contribution of physicist John von Neumann . Similar devices were developed by

11449-578: Was used in the third test, but only produced approximately 150 kt (630 TJ). AGM-129 In 1982 the US Air Force began studies for a new cruise missile with low-observable characteristics after it became clear that the AGM-86B cruise missile would have difficulty penetrating future air defense systems. The AGM-86B relied on low-altitude flight to penetrate the Soviet air defense system centered on surface to air missiles . The deployment of

#625374