Misplaced Pages

X4

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#69930

45-489: X4 , X-4 or x4 may refer to: BMW X4 , a German crossover automobile Sehol X4 , a Chinese crossover automobile Honda X4 , a Japanese motorcycle Moto X4 , an Android Smartphone Mega Man X4 , a video game Naish X4, a kitesurfing kite The Norteños street gang Northrop X-4 Bantam , an early jet age research aircraft A common name for petroleum ether A four-lane PCI Express slot Ruhrstahl X-4 ,

90-563: A 2018 video game See also [ edit ] 4X (disambiguation) [REDACTED] Topics referred to by the same term This disambiguation page lists articles associated with the same title formed as a letter–number combination. If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=X4&oldid=1128065565 " Category : Letter–number combination disambiguation pages Hidden categories: Short description

135-598: A German World War II air-to-air guided missile Ultimate X4 , a comic-book crossover in the Ultimate Marvel Universe X4 (New York City bus) , an express bus route Stagecoach Gold bus route X4 , a bus route in the United Kingdom X4 virus , a T-cell tropic HIV X-Men Origins: Wolverine , a 2009 film X-Men: Days of Future Past , a 2014 film WordPerfect X4, a version of word processing software X4: Foundations ,

180-428: A given displacement . The current categorisation is that a turbocharger is powered by the kinetic energy of the exhaust gases, whereas a supercharger is mechanically powered (usually by a belt from the engine's crankshaft). However, up until the mid-20th century, a turbocharger was called a "turbosupercharger" and was considered a type of supercharger. Prior to the invention of the turbocharger, forced induction

225-405: A limiting factor in the peak power produced by the engine. Various technologies, as described in the following sections, are often aimed at combining the benefits of both small turbines and large turbines. Large diesel engines often use a single-stage axial inflow turbine instead of a radial turbine. A twin-scroll turbocharger uses two separate exhaust gas inlets, to make use of the pulses in

270-574: A pioneering role with turbocharging engines as witnessed by Sulzer, Saurer and Brown, Boveri & Cie . Automobile manufacturers began research into turbocharged engines during the 1950s, however the problems of "turbo lag" and the bulky size of the turbocharger were not able to be solved at the time. The first turbocharged cars were the short-lived Chevrolet Corvair Monza and the Oldsmobile Jetfire , both introduced in 1962. Greater adoption of turbocharging in passenger cars began in

315-576: A power boost kit making 27hp more (286hp) and 20d models can be fitted with a dual exhaust. The second-generation was revealed online in February 2018 as the successor to the F26 X4, with sales commenced in July 2018. It shares its platform and basic styling elements with the third-generation BMW X3 . Available variants include xDrive30i, xDrive20d, xDrive30d, xDriveM40i, and xDriveM40d. In North America ,

360-500: A splitter, spoiler, sport steering wheel, carbon fibre vents and kidney grilles. 2019 The Alpina XD4 debuted at the 2018 Geneva Motor Show . It is fitted with a modified version of the B57 diesel engine with four turbochargers, and outputs 285 kW (382 hp) and 770 N⋅m (570 lb⋅ft). The XD4 is the fastest accelerating diesel-powered production SUV, and can accelerate from 0–100 km/h (62 mph) in 4.6 s and has

405-426: A sports exhaust system, a stiffer suspension setup, and M Sport styling. All models are only available with all-wheel drive ( xDrive ), and meet Euro 6 emission regulations . M Performance Parts were released in the facelift and can be installed to all models. These include carbon fibre mirrors, a sport steering wheel, M rims, black kidney grilles, a carbon fibre spoiler and Aluminium pedals. 30d models also get

450-417: A top speed of 268 km/h (167 mph). It is available in left-hand drive markets only. Turbocharger In an internal combustion engine , a turbocharger (also known as a turbo or a turbosupercharger ) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake air, forcing more air into the engine in order to produce more power for

495-450: Is different from Wikidata All article disambiguation pages All disambiguation pages BMW X4 The BMW X4 is a compact luxury crossover SUV manufactured by BMW since 2014. It is marketed as a sports activity coupé (SAC), the second model from BMW marketed as such after the X6 , and features styling elements and the roofline of a traditional two-door coupé . The X4

SECTION 10

#1732758471070

540-412: Is done with the use of adjustable vanes located inside the turbine housing between the inlet and turbine, which affect flow of gases towards the turbine. Some variable-geometry turbochargers use a rotary electric actuator to open and close the vanes, while others use a pneumatic actuator . If the turbine's aspect ratio is too large, the turbo will fail to create boost at low speeds; if the aspect ratio

585-474: Is increasing. The companies which manufacture the most turbochargers in Europe and the U.S. are Garrett Motion (formerly Honeywell), BorgWarner and Mitsubishi Turbocharger . Turbocharger failures and resultant high exhaust temperatures are among the causes of car fires. Failure of the seals will cause oil to leak into the cylinders causing blue-gray smoke. In diesel engines, this can cause an overspeed,

630-470: Is often considered the birth of the turbocharger. This patent was for a compound radial engine with an exhaust-driven axial flow turbine and compressor mounted on a common shaft. The first prototype was finished in 1915 with the aim of overcoming the power loss experienced by aircraft engines due to the decreased density of air at high altitudes. However, the prototype was not reliable and did not reach production. Another early patent for turbochargers

675-402: Is that the optimum aspect ratio at low engine speeds is very different from that at high engine speeds. An electrically-assisted turbocharger combines a traditional exhaust-powered turbine with an electric motor, in order to reduce turbo lag. This differs from an electric supercharger , which solely uses an electric motor to power the compressor. The compressor draws in outside air through

720-411: Is that the two nozzles are different sizes: the smaller nozzle is installed at a steeper angle and is used for low-rpm response, while the larger nozzle is less angled and optimised for times when high outputs are required. Variable-geometry turbochargers (also known as variable-nozzle turbochargers ) are used to alter the effective aspect ratio of the turbocharger as operating conditions change. This

765-490: Is too small, the turbo will choke the engine at high speeds, leading to high exhaust manifold pressures, high pumping losses, and ultimately lower power output. By altering the geometry of the turbine housing as the engine accelerates, the turbo's aspect ratio can be maintained at its optimum. Because of this, variable-geometry turbochargers often have reduced lag, a lower boost threshold, and greater efficiency at higher engine speeds. The benefit of variable-geometry turbochargers

810-441: Is unable to produce significant boost. At low rpm, the exhaust gas flow rate is unable to spin the turbine sufficiently. The boost threshold causes delays in the power delivery at low rpm (since the unboosted engine must accelerate the vehicle to increase the rpm above the boost threshold), while turbo lag causes delay in the power delivery at higher rpm. Some engines use multiple turbochargers, usually to reduce turbo lag, increase

855-533: Is widely considered as a "coupé" version of the X3 , trading its practicality with a sloping rear roof which offers a sportier styling. The first-generation X4 was unveiled at the 2014 New York International Auto Show , followed by the 13th Beijing International Automotive Exhibition 2014, and at the 22nd Auto Mobil International Leipzig 2014. Early models included xDrive20i, xDrive28i, xDrive35i, xDrive20d, xDrive30d, and xDrive35d. The M Performance M40i model

900-739: The Boeing B-17 Flying Fortress in 1938, which used turbochargers produced by General Electric. Other early turbocharged airplanes included the Consolidated B-24 Liberator , Lockheed P-38 Lightning , Republic P-47 Thunderbolt and experimental variants of the Focke-Wulf Fw 190 . The first practical application for trucks was realized by Swiss truck manufacturing company Saurer in the 1930s. BXD and BZD engines were manufactured with optional turbocharging from 1931 onwards. The Swiss industry played

945-413: The crankshaft ) whereas a turbocharger is powered by the kinetic energy of the engine's exhaust gas . A turbocharger does not place a direct mechanical load on the engine, although turbochargers place exhaust back pressure on engines, increasing pumping losses. Supercharged engines are common in applications where throttle response is a key concern, and supercharged engines are less likely to heat soak

SECTION 20

#1732758471070

990-414: The 1980s, as a way to increase the performance of smaller displacement engines. Like other forced induction devices, a compressor in the turbocharger pressurises the intake air before it enters the inlet manifold . In the case of a turbocharger, the compressor is powered by the kinetic energy of the engine's exhaust gases, which is extracted by the turbocharger's turbine . The main components of

1035-502: The 2019 BMW X4 went on sale in the second quarter of 2018 as an early 2019 model year vehicle. It is available in either xDrive30i or M40i variants. The G02 X4 was developed alongside the G01 X3 , on which it is based on. The X4 features dual ball joint front axle and five-link rear axle suspension, and uses BMW's Cluster Architecture (CLAR) platform that incorporates aluminium and high strength steel. Compared to its predecessor,

1080-518: The BMW Spartanburg plant in preparation for the production of X models, including the F26 X4. Models are offered in a standard, xLine, or M Sport trim. All feature BMW EfficientDynamics program that includes an engine start stop system and brake energy regeneration . Available equipment includes 40:20:40 split folding rear seats, iDrive , a head-up display , and real-time traffic information . M40i models feature 19-inch alloy wheels,

1125-584: The X4 is 50 kg (110 lb) lighter and is 52 mm (2.0 in) taller, 81 mm (3.2 in) longer, and 37 mm (1.5 in) wider. Standard equipment consists of bi-LED headlights, an automatic tailgate, 40:20:40 split folding rear seats, and iDrive 6.0. Models are offered in xLine, M Sport, and M Sport X trim. xLine trim models feature underbody protection , 19-inch alloy wheels and sports seats, while M Sport models include M Sport styling, and M Sport suspension and brakes. M Sport X models include

1170-449: The compressor blades. Ported shroud designs can have greater resistance to compressor surge and can improve the efficiency of the compressor wheel. The center hub rotating assembly (CHRA) houses the shaft that connects the turbine to the compressor. A lighter shaft can help reduce turbo lag. The CHRA also contains a bearing to allow this shaft to rotate at high speeds with minimal friction. Some CHRAs are water-cooled and have pipes for

1215-403: The engine rpm is within the turbocharger's operating range – that occurs between pressing the throttle and the turbocharger spooling up to provide boost pressure. This delay is due to the increasing exhaust gas flow (after the throttle is suddenly opened) taking time to spin up the turbine to speeds where boost is produced. The effect of turbo lag is reduced throttle response , in

1260-559: The engine's coolant to flow through. One reason for water cooling is to protect the turbocharger's lubricating oil from overheating. The simplest type of turbocharger is the free floating turbocharger. This system would be able to achieve maximum boost at maximum engine revs and full throttle, however additional components are needed to produce an engine that is driveable in a range of load and rpm conditions. Additional components that are commonly used in conjunction with turbochargers are: Turbo lag refers to delay – when

1305-418: The engine's intake system, pressurises it, then feeds it into the combustion chambers (via the inlet manifold ). The compressor section of the turbocharger consists of an impeller, a diffuser, and a volute housing. The operating characteristics of a compressor are described by the compressor map . Some turbochargers use a "ported shroud", whereby a ring of holes or circular grooves allows air to bleed around

1350-410: The flow of exhaust gases to mechanical energy of a rotating shaft (which is used to power the compressor section). The turbine housings direct the gas flow through the turbine section, and the turbine itself can spin at speeds of up to 250,000 rpm. Some turbocharger designs are available with multiple turbine housing options, allowing a housing to be selected to best suit the engine's characteristics and

1395-400: The flow of the exhaust gasses from each cylinder. In a standard (single-scroll) turbocharger, the exhaust gas from all cylinders is combined and enters the turbocharger via a single intake, which causes the gas pulses from each cylinder to interfere with each other. For a twin-scroll turbocharger, the cylinders are split into two groups in order to maximize the pulses. The exhaust manifold keeps

X4 - Misplaced Pages Continue

1440-404: The form of a delay in the power delivery. Superchargers do not suffer from turbo lag because the compressor mechanism is driven directly by the engine. Methods to reduce turbo lag include: A similar phenomenon that is often mistaken for turbo lag is the boost threshold . This is where the engine speed (rpm) is currently below the operating range of the turbocharger system, therefore the engine

1485-410: The gases from these two groups of cylinders separated, then they travel through two separate spiral chambers ("scrolls") before entering the turbine housing via two separate nozzles. The scavenging effect of these gas pulses recovers more energy from the exhaust gases, minimizes parasitic back losses and improves responsiveness at low engine speeds. Another common feature of twin-scroll turbochargers

1530-502: The intake air. A combination of an exhaust-driven turbocharger and an engine-driven supercharger can mitigate the weaknesses of both. This technique is called twincharging . Turbochargers have been used in the following applications: In 2017, 27% of vehicles sold in the US were turbocharged. In Europe 67% of all vehicles were turbocharged in 2014. Historically, more than 90% of turbochargers were diesel, however, adoption in petrol engines

1575-407: The performance requirements. A turbocharger's performance is closely tied to its size, and the relative sizes of the turbine wheel and the compressor wheel. Large turbines typically require higher exhaust gas flow rates, therefore increasing turbo lag and increasing the boost threshold. Small turbines can produce boost quickly and at lower flow rates, since it has lower rotational inertia, but can be

1620-560: The power output from 1,300 to 1,860 kilowatts (1,750 to 2,500 hp). This engine was used by the German Ministry of Transport for two large passenger ships called the Preussen and Hansestadt Danzig . The design was licensed to several manufacturers and turbochargers began to be used in marine, railcar and large stationary applications. Turbochargers were used on several aircraft engines during World War II, beginning with

1665-399: The range of rpm where boost is produced, or simplify the layout of the intake/exhaust system. The most common arrangement is twin turbochargers, however triple-turbo or quad-turbo arrangements have been occasionally used in production cars. The key difference between a turbocharger and a supercharger is that a supercharger is mechanically driven by the engine (often through a belt connected to

1710-470: The same features, as well as anthracite headliner and Frozen Grey exterior trim elements. The M40i and M40d also gain a rear M Sport Differential—a single-clutch electromechanical rear differential which emulates the behavior of a conventional LSD. Optional ConnectedDrive features also enable Apple CarPlay and Amazon Alexa or Google Assistant integration. All 20-40 models can be fitted with M Performance Parts. These include carbon fiber mirrors. In

1755-470: The spring of 2020, the X4 xDrive20d was given a mild hybrid 48 volt system. In 2019, BMW introduced the X4 M and X4 M Competition (F98), being the first time an X4 had a M version. The X4 M is fitted with a 3.0 L S58 straight-six that produced 473 horsepower with the Competition models producing 503 horsepower. Full M models can be fitted with full M specific M Performance Parts. These include

1800-407: The turbocharger are: The turbine section (also called the "hot side" or "exhaust side" of the turbo) is where the rotational force is produced, in order to power the compressor (via a rotating shaft through the center of a turbo). After the exhaust has spun the turbine it continues into the exhaust piping and out of the vehicle. The turbine uses a series of blades to convert kinetic energy from

1845-478: Was announced in 2015. It was officially revealed at the 2016 Detroit Auto Show , and produces 265 kW (355 hp) and 465 N⋅m (343 lb⋅ft) from its turbocharged 6-cylinder engine. It has a 0–100 km/h (62 mph) time of 4.7 seconds. It went on sale from February 2016. The F26 X4 is previewed by the BMW Concept X4 that was unveiled at Auto Shanghai 2013. The production model

X4 - Misplaced Pages Continue

1890-611: Was applied for in 1916 by French steam turbine inventor Auguste Rateau , for their intended use on the Renault engines used by French fighter planes. Separately, testing in 1917 by the National Advisory Committee for Aeronautics (NACA) and Sanford Alexander Moss showed that a turbocharger could enable an engine to avoid any power loss (compared with the power produced at sea level) at an altitude of up to 4,250 m (13,944 ft) above sea level. The testing

1935-804: Was conducted at Pikes Peak in the United States using the Liberty L-12 aircraft engine. The first commercial application of a turbocharger was in June 1924 when the first heavy duty turbocharger, model VT402, was delivered from the Baden works of Brown, Boveri & Cie , under the supervision of Alfred Büchi, to SLM, Swiss Locomotive and Machine Works in Winterthur. This was followed very closely in 1925, when Alfred Büchi successfully installed turbochargers on ten-cylinder diesel engines, increasing

1980-638: Was later unveiled in 2014 at the New York International Auto Show . The X4 shares its powertrains with the X3, including a variety of four and six-cylinder petrol and diesel engines. The X4 is slotted above the X3 but below the X5 in the model range, and is 23 mm (1 in) longer and 37 mm (1 in) taller than the F25 X3 it is based on. A total of $ 900 million was invested in

2025-417: Was only possible using mechanically-powered superchargers . Use of superchargers began in 1878, when several supercharged two-stroke gas engines were built using a design by Scottish engineer Dugald Clerk . Then in 1885, Gottlieb Daimler patented the technique of using a gear-driven pump to force air into an internal combustion engine. The 1905 patent by Alfred Büchi , a Swiss engineer working at Sulzer

#69930