AVR is a family of microcontrollers developed since 1996 by Atmel , acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM , EPROM , or EEPROM used by other microcontrollers at the time.
102-523: AVR microcontrollers find many applications as embedded systems . They are especially common in hobbyist and educational embedded applications, popularized by their inclusion in many of the Arduino line of open hardware development boards. The AVR architecture was conceived by two students at the Norwegian Institute of Technology (NTH), Alf-Egil Bogen and Vegard Wollan. Atmel says that
204-741: A digital signal processor (DSP), with higher clock speeds and power consumption. The first multi-chip microprocessors, the Four-Phase Systems AL1 in 1969 and the Garrett AiResearch MP944 in 1970, were developed with multiple MOS LSI chips. The first single-chip microprocessor was the Intel 4004 , released on a single MOS LSI chip in 1971. It was developed by Federico Faggin , using his silicon-gate MOS technology, along with Intel engineers Marcian Hoff and Stan Mazor , and Busicom engineer Masatoshi Shima . It
306-480: A personal computer , and may lack human interaction devices of any kind. Microcontrollers must provide real-time (predictable, though not necessarily fast) response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspend processing the current instruction sequence and to begin an interrupt service routine (ISR, or "interrupt handler") which will perform any processing required based on
408-538: A "window" on the top of the device through which program memory can be erased by ultraviolet light, ready for reprogramming after a programming ("burn") and test cycle. Since 1998, EPROM versions are rare and have been replaced by EEPROM and flash, which are easier to use (can be erased electronically) and cheaper to manufacture. Other versions may be available where the ROM is accessed as an external device rather than as internal memory, however these are becoming rare due to
510-488: A Harvard architecture is used, instruction words for the processor may be a different bit size than the length of internal memory and registers; for example: 12-bit instructions used with 8-bit data registers. The decision of which peripheral to integrate is often difficult. The microcontroller vendors often trade operating frequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance
612-776: A complete system - consisting of multiple processors, multipliers, caches, even different types of memory and commonly various peripherals like interfaces for wired or wireless communication on a single chip. Often graphics processing units (GPU) and DSPs are included such chips. SoCs can be implemented as an application-specific integrated circuit (ASIC) or using a field-programmable gate array (FPGA) which typically can be reconfigured. ASIC implementations are common for very-high-volume embedded systems like mobile phones and smartphones . ASIC or FPGA implementations may be used for not-so-high-volume embedded systems with special needs in kind of signal processing performance, interfaces and reliability, like in avionics. Embedded systems talk with
714-415: A dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009 , it
816-424: A device. So the analog-to-digital converter is used to convert the incoming data into a form that the processor can recognize. A less common feature on some microcontrollers is a digital-to-analog converter (DAC) that allows the processor to output analog signals or voltage levels. In addition to the converters, many embedded microprocessors include a variety of timers as well. One of the most common types of timers
918-843: A general-purpose processor might require several instructions to test a bit in a register and branch if the bit is set, where a microcontroller could have a single instruction to provide that commonly required function. Microcontrollers historically have not had math coprocessors , so floating-point arithmetic has been performed by software. However, some recent designs do include FPUs and DSP-optimized features. An example would be Microchip's PIC32 MIPS-based line. Microcontrollers were originally programmed only in assembly language , but various high-level programming languages , such as C , Python and JavaScript , are now also in common use to target microcontrollers and embedded systems . Compilers for general-purpose languages will typically have some restrictions as well as enhancements to better support
1020-560: A local ASIC house in Trondheim, Norway , called Nordic VLSI at the time, now Nordic Semiconductor , where Bogen and Wollan were working as students. It was known as a μRISC (Micro RISC) and was available as silicon IP/building block from Nordic VLSI. When the technology was sold to Atmel from Nordic VLSI , the internal architecture was further developed by Bogen and Wollan at Atmel Norway, a subsidiary of Atmel. The designers worked closely with compiler writers at IAR Systems to ensure that
1122-425: A microcontroller from a low-power sleep state where the processor is halted until required to do something by a peripheral event. Typically microcontroller programs must fit in the available on-chip memory, since it would be costly to provide a system with external, expandable memory. Compilers and assemblers are used to convert both high-level and assembly language code into a compact machine code for storage in
SECTION 10
#17327982223751224-555: A myriad of things in the physical world and act on this information through monitoring and control systems. These motes are completely self-contained and will typically run off a battery source for years before the batteries need to be changed or charged. Embedded systems are designed to perform a specific task, in contrast with general-purpose computers designed for multiple tasks. Some have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no performance requirements, allowing
1326-450: A parallel external bus option to allow adding additional data memory or memory-mapped devices. Almost all devices (except the smallest TinyAVR chips) have serial interfaces, which can be used to connect larger serial EEPROMs or flash chips. Program instructions are stored in non-volatile flash memory . Although the MCUs are 8-bit, each instruction takes one or two 16-bit words. The size of
1428-484: A reduced clock speed. All recent (Tiny, Mega, and Xmega, but not 90S) AVRs feature an on-chip oscillator, removing the need for external clocks or resonator circuitry. Some AVRs also have a system clock prescaler that can divide down the system clock by up to 1024. This prescaler can be reconfigured by software during run-time, allowing the clock speed to be optimized. Since all operations (excluding multiplication and 16-bit add/subtract) on registers R0–R31 are single-cycle,
1530-766: A self-contained system with a processor, memory and peripherals and can be used as an embedded system . The majority of microcontrollers in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system , and low software complexity. Typical input and output devices include switches, relays , solenoids , LED 's, small or custom liquid-crystal displays , radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of
1632-458: A simple menu system . More sophisticated devices that use a graphical screen with touch sensing or screen-edge soft keys provide flexibility while minimizing space used: the meaning of the buttons can change with the screen, and selection involves the natural behavior of pointing at what is desired. Some systems provide user interface remotely with the help of a serial (e.g. RS-232 ) or network (e.g. Ethernet ) connection. This approach extends
1734-500: A single microcontroller chip, to very high with multiple units, peripherals and networks, which may reside in equipment racks or across large geographical areas connected via long-distance communications lines. The origins of the microprocessor and the microcontroller can be traced back to the MOS integrated circuit , which is an integrated circuit chip fabricated from MOSFETs (metal–oxide–semiconductor field-effect transistors ) and
1836-475: A single role. Examples of devices that may adopt this approach are automated teller machines (ATM) and arcade machines , which contain code specific to the application. However, most ready-made embedded systems boards are not PC-centered and do not use the ISA or PCI busses. When a system-on-a-chip processor is involved, there may be little benefit to having a standardized bus connecting discrete components, and
1938-574: A smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board, in addition to tending to decrease the defect rate for the finished assembly. A microcontroller is a single integrated circuit , commonly with the following features: This integration drastically reduces the number of chips and the amount of wiring and circuit board space that would be needed to produce equivalent systems using separate chips. Furthermore, on low pin count devices in particular, each pin may interface to several internal peripherals, with
2040-818: A software-based tracing method used in RTOS environments is the use of empty macros which are invoked by the operating system at strategic places in the code, and can be implemented to serve as hooks . Embedded systems often reside in machines that are expected to run continuously for years without error, and in some cases recover by themselves if an error occurs. Therefore, the software is usually developed and tested more carefully than that for personal computers, and unreliable mechanical moving parts such as disk drives, switches or buttons are avoided. Specific reliability issues may include: A variety of techniques are used, sometimes in combination, to recover from errors—both software bugs such as memory leaks , and also soft errors in
2142-542: A solid amount of program memory, as well as a wide range of pins available. The megaAVR 0-series (released in 2016) also has functionality such as: AVR Dx – The AVR Dx family is featuring multiple microcontroller series, focused on HCI , analog signal conditioning and functional safety. The parts numbers is formatted as AVR ff D xpp , where ff is flash size, x is family, and pp is number of pins. Example: AVR128DA64 – 64-pin DA-series with 128k flash. All devices in
SECTION 20
#17327982223752244-624: A specific function as a subsystem of the car itself. The program instructions written for embedded systems are referred to as firmware , and are stored in read-only memory or flash memory chips. They run with limited computer hardware resources: little memory, small or non-existent keyboard or screen. Embedded systems range from no user interface at all, in systems dedicated to one task, to complex graphical user interfaces that resemble modern computer desktop operating systems. Simple embedded devices use buttons , light-emitting diodes (LED), graphic or character liquid-crystal displays (LCD) with
2346-455: A standard PC, although still quite large compared to most simple (8/16-bit) embedded systems. They may use DOS , FreeBSD , Linux , NetBSD , OpenHarmony or an embedded real-time operating system (RTOS) such as MicroC/OS-II , QNX or VxWorks . In certain applications, where small size or power efficiency are not primary concerns, the components used may be compatible with those used in general-purpose x86 personal computers. Boards such as
2448-427: A standard for programmable microcontrollers, including almost any computer-based controllers, such as single-board computers , numerical, and event-based controllers. There are several different types of software architecture in common use. In this design, the software simply has a loop which monitors the input devices. The loop calls subroutines , each of which manages a part of the hardware or software. Hence it
2550-446: A variety of in-system programming hardware, including Atmel AVRISP mkII, Atmel JTAG ICE, older Atmel serial-port based programmers, and various third-party and "do-it-yourself" programmers. The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip debugging of XMEGA devices. The PDI supports high-speed programming of all non-volatile memory (NVM) spaces; flash, EEPROM, fuses, lock-bits and
2652-419: Is a selection of operating systems, usually including Linux and some real-time choices. These modules can be manufactured in high volume, by organizations familiar with their specialized testing issues, and combined with much lower volume custom mainboards with application-specific external peripherals. Prominent examples of this approach include Arduino and Raspberry Pi . A system on a chip (SoC) contains
2754-409: Is a small computer on a single integrated circuit . A microcontroller contains one or more CPUs ( processor cores ) along with memory and programmable input/output peripherals. Program memory in the form of NOR flash , OTP ROM , or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM . Microcontrollers are designed for embedded applications, in contrast to
2856-417: Is called a simple control loop or programmed input-output. Some embedded systems are predominantly controlled by interrupts . This means that tasks performed by the system are triggered by different kinds of events; an interrupt could be generated, for example, by a timer at a predefined interval, or by a serial port controller receiving data. This architecture is used if event handlers need low latency, and
2958-623: Is presented by a host PC tool, based on a recording of the system behavior. The trace recording can be performed in software, by the RTOS, or by special tracing hardware. RTOS tracing allows developers to understand timing and performance issues of the software system and gives a good understanding of the high-level system behaviors. Trace recording in embedded systems can be achieved using hardware or software solutions. Software-based trace recording does not require specialized debugging hardware and can be used to record traces in deployed devices, but it can have an impact on CPU and RAM usage. One example of
3060-422: Is purchased or provided by a person other than the manufacturer of the electronics. In these systems, an open programming environment such as Linux , NetBSD , FreeBSD , OSGi or Embedded Java is required so that the third-party software provider can sell to a large market. Embedded debugging may be performed at different levels, depending on the facilities available. Considerations include: does it slow down
3162-577: Is removed. In most variants of the AVR architecture, this internal EEPROM memory is not mapped into the MCU's addressable memory space. It can only be accessed the same way an external peripheral device is, using special pointer registers and read/write instructions, which makes EEPROM access much slower than other internal RAM. However, some devices in the SecureAVR (AT90SC) family use a special EEPROM mapping to
AVR microcontrollers - Misplaced Pages Continue
3264-421: Is the programmable interval timer (PIT). A PIT may either count down from some value to zero, or up to the capacity of the count register, overflowing to zero. Once it reaches zero, it sends an interrupt to the processor indicating that it has finished counting. This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the air conditioner on/off,
3366-620: Is usually more complex than a traditional solution, most of the complexity is contained within the microcontroller itself. Very few additional components may be needed and most of the design effort is in the software. Software prototype and test can be quicker compared with the design and construction of a new circuit not using an embedded processor. Embedded systems are commonly found in consumer, industrial, automotive , home appliances , medical, telecommunication, commercial, aerospace and military applications. Telecommunications systems employ numerous embedded systems from telephone switches for
3468-407: Is widely used. LLVM also has rudimentary AVR support. In fact, Atmel solicited input from major developers of compilers for small microcontrollers, to determine the instruction set features that were most useful in a compiler for high-level languages. The AVR line can normally support clock speeds from 0 to 20 MHz, with some devices reaching 32 MHz. Lower-powered operation usually requires
3570-438: The Intel 4004 (released in 1971), was designed for calculators and other small systems but still required external memory and support chips. By the early 1980s, memory, input and output system components had been integrated into the same chip as the processor forming a microcontroller. Microcontrollers find applications where a general-purpose computer would be too costly. As the cost of microprocessors and microcontrollers fell,
3672-401: The Intel 8048 , with commercial parts first shipping in 1977. It combined RAM and ROM on the same chip with a microprocessor. Among numerous applications, this chip would eventually find its way into over one billion PC keyboards. At that time Intel's President, Luke J. Valenter, stated that the microcontroller was one of the most successful products in the company's history, and he expanded
3774-703: The microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips. In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on a chip (SoC). A SoC may include a microcontroller as one of its components but usually integrates it with advanced peripherals like a graphics processing unit (GPU), a Wi-Fi module, or one or more coprocessors . Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, implantable medical devices, remote controls, office machines, appliances, power tools, toys, and other embedded systems . By reducing
3876-784: The register file , I/O registers, and SRAM . Some small models also map the program ROM into the data address space, but larger models do not. In the tinyAVR and megaAVR variants of the AVR architecture , the working registers are mapped in as the first 32 data memory addresses (0000 16 –001F 16 ), followed by 64 I/O registers (0020 16 –005F 16 ). In devices with many peripherals, these registers are followed by 160 “extended I/O” registers, only accessible as memory-mapped I/O (0060 16 –00FF 16 ). Actual SRAM starts after these register sections, at address 0060 16 or, in devices with "extended I/O", at 0100 16 . Even though there are separate addressing schemes and optimized opcodes for accessing
3978-771: The "world's smallest computer" was announced by the University of Michigan . The device is a " 0.04 mm 16 nW wireless and batteryless sensor system with integrated Cortex-M0+ processor and optical communication for cellular temperature measurement." It "measures just 0.3 mm to a side—dwarfed by a grain of rice. [...] In addition to the RAM and photovoltaics , the new computing devices have processors and wireless transmitters and receivers . Because they are too small to have conventional radio antennae, they receive and transmit data with visible light. A base station provides light for power and programming, and it receives
4080-572: The 6501 and 6502 . Their chief aim was to reduce this cost barrier but these microprocessors still required external support, memory, and peripheral chips which kept the total system cost in the hundreds of dollars. One book credits TI engineers Gary Boone and Michael Cochran with the successful creation of the first microcontroller in 1971. The result of their work was the TMS 1000 , which became commercially available in 1974. It combined read-only memory, read/write memory, processor and clock on one chip and
4182-601: The 8-bit segment has dominated the MCU market [..] 16-bit microcontrollers became the largest volume MCU category in 2011, overtaking 8-bit devices for the first time that year [..] IC Insights believes the makeup of the MCU market will undergo substantial changes in the next five years with 32-bit devices steadily grabbing a greater share of sales and unit volumes. By 2017, 32-bit MCUs are expected to account for 55% of microcontroller sales [..] In terms of unit volumes, 32-bit MCUs are expected account for 38% of microcontroller shipments in 2017, while 16-bit devices will represent 34% of
AVR microcontrollers - Misplaced Pages Continue
4284-540: The AVR Dx family include: XMEGA the ATxmega series offers a wide variety of peripherals and functionality such as: Application-specific AVR FPSLIC (AVR with FPGA) 32-bit AVRs The AVRs have 32 single-byte registers and are classified as 8-bit RISC devices. Flash , EEPROM , and SRAM are all integrated onto a single chip, removing the need for external memory in most applications. Some devices have
4386-505: The AVR can achieve up to 1 MIPS per MHz, i.e. an 8 MHz processor can achieve up to 8 MIPS. Loads and stores to/from memory take two cycles, branching takes two cycles. Branches in the latest "3-byte PC" parts such as ATmega2560 are one cycle slower than on previous devices. AVRs have a large following due to the free and inexpensive development tools available, including reasonably priced development boards and free development software. The AVRs are sold under various names that share
4488-432: The AVR chip can stay soldered on a PCB while reprogramming. All that is needed is a 6-pin connector and programming adapter. This is the most common way to develop with an AVR. The Atmel-ICE device or AVRISP mkII (Legacy device) connects to a computer's USB port and performs in-system programming using Atmel's software. AVRDUDE (AVR Downloader/UploaDEr) runs on Linux , FreeBSD , Windows , and Mac OS X , and supports
4590-575: The AVR instruction set provided efficient compilation of high-level languages . Among the first of the AVR line was the AT90S8515, which in a 40-pin DIP package has the same pinout as an 8051 microcontroller, including the external multiplexed address and data bus. The polarity of the RESET line was opposite (8051's having an active-high RESET, while the AVR has an active-low RESET ), but other than that
4692-588: The Load Program Memory (LPM) instruction is unnecessary and omitted. (For detailed info, see Atmel AVR instruction set .) In the XMEGA variant, the working register file is not mapped into the data address space; as such, it is not possible to treat any of the XMEGA's working registers as though they were SRAM. Instead, the I/O registers are mapped into the data address space starting at the very beginning of
4794-743: The OTP versions, which could be made in lower-cost opaque plastic packages. For the erasable variants, quartz was required, instead of less expensive glass, for its transparency to ultraviolet light—to which glass is largely opaque—but the main cost differentiator was the ceramic package itself. In 1993, the introduction of EEPROM memory allowed microcontrollers (beginning with the Microchip PIC16C84 ) to be electrically erased quickly without an expensive package as required for EPROM , allowing both rapid prototyping, and in-system programming . (EEPROM technology had been available prior to this time, but
4896-706: The User Signature Row. This is done by accessing the XMEGA NVM controller through the PDI interface, and executing NVM controller commands. The PDI is a 2-pin interface using the Reset pin for clock input (PDI_CLK) and a dedicated data pin (PDI_DATA) for input and output. Embedded system An embedded system is a specialized computer system —a combination of a computer processor , computer memory , and input/output peripheral devices—that has
4998-517: The VIA EPIA range help to bridge the gap by being PC-compatible but highly integrated, physically smaller or have other attributes making them attractive to embedded engineers. The advantage of this approach is that low-cost commodity components may be used along with the same software development tools used for general software development. Systems built in this way are still regarded as embedded since they are integrated into larger devices and fulfill
5100-664: The ability to read data items from program memory using special instructions. AVRs are generally classified into following: tinyAVR – the ATtiny series The ATtiny series features small package microcontrollers with a limited peripheral set available. However, the improved tinyAVR 0/1/2-series (released in 2016) include: megaAVR – the ATmega series The ATmega series features microcontrollers that provide an extended instruction set (multiply instructions and instructions for handling larger program memories), an extensive peripheral set,
5202-413: The address space. Additionally, the amount of data address space dedicated to I/O registers has grown substantially to 4096 bytes (0000 16 –0FFF 16 ). As with previous generations, however, the fast I/O manipulation instructions can only reach the first 64 I/O register locations (the first 32 locations for bitwise instructions). Following the I/O registers, the XMEGA series sets aside a 4096 byte range of
SECTION 50
#17327982223755304-447: The capabilities of the embedded system, avoids the cost of a display, simplifies the board support package (BSP) and allows designers to build a rich user interface on the PC. A good example of this is the combination of an embedded HTTP server running on an embedded device (such as an IP camera or a network router ). The user interface is displayed in a web browser on a PC connected to
5406-1035: The cheapest 8-bit microcontrollers being available for under US$ 0.03 in 2018, and some 32-bit microcontrollers around US$ 1 for similar quantities. In 2012, following a global crisis—a worst ever annual sales decline and recovery and average sales price year-over-year plunging 17%—the biggest reduction since the 1980s—the average price for a microcontroller was US$ 0.88 ( US$ 0.69 for 4-/8-bit, US$ 0.59 for 16-bit, US$ 1.76 for 32-bit). In 2012, worldwide sales of 8-bit microcontrollers were around US$ 4 billion , while 4-bit microcontrollers also saw significant sales. In 2015, 8-bit microcontrollers could be bought for US$ 0.311 (1,000 units), 16-bit for US$ 0.385 (1,000 units), and 32-bit for US$ 0.378 (1,000 units, but at US$ 0.35 for 5,000). In 2018, 8-bit microcontrollers could be bought for US$ 0.03 , 16-bit for US$ 0.393 (1,000 units, but at US$ 0.563 for 100 or US$ 0.349 for full reel of 2,000), and 32-bit for US$ 0.503 (1,000 units, but at US$ 0.466 for 5,000). In 2018,
5508-432: The contents need to be changed. Atmel's AVRs have a two-stage, single-level pipeline design. This means the next machine instruction is fetched as the current one is executing. Most instructions take just one or two clock cycles, making AVRs relatively fast among eight-bit microcontrollers. The AVR processors were designed with the efficient execution of compiled C code in mind and have several built-in pointers for
5610-748: The data address space, which can be used optionally for mapping the internal EEPROM to the data address space (1000 16 –1FFF 16 ). The actual SRAM is located after these ranges, starting at 2000 16 . Each GPIO port on a tiny or mega AVR drives up to eight pins and is controlled by three 8-bit registers: DDR x , PORT x and PIN x , where x is the port identifier. Newer ATtiny AVR's, like ATtiny817 and its siblings, have their port control registers somewhat differently defined. xmegaAVR have additional registers for push/pull, totem-pole and pullup configurations. Almost all AVR microcontrollers have internal EEPROM for semi-permanent data storage. Like flash memory, EEPROM can maintain its contents when electrical power
5712-481: The data or program memory, depending on the configuration. The XMEGA family also allows the EEPROM to be mapped into the data address space. Since the number of writes to EEPROM is limited – Atmel specifies 100,000 write cycles in their datasheets – a well designed EEPROM write routine should compare the contents of an EEPROM address with desired contents and only perform an actual write if
5814-469: The data." The device is 1 ⁄ 10 th the size of IBM's previously claimed world-record-sized computer from months back in March 2018, which is "smaller than a grain of salt", has a million transistors, costs less than $ 0.10 to manufacture, and, combined with blockchain technology, is intended for logistics and "crypto-anchors"— digital fingerprint applications. A microcontroller can be considered
5916-683: The device. Examples of properties of typical embedded computers when compared with general-purpose counterparts, are low power consumption, small size, rugged operating ranges, and low per-unit cost. This comes at the expense of limited processing resources. Numerous microcontrollers have been developed for embedded systems use. General-purpose microprocessors are also used in embedded systems, but generally, require more support circuitry than microcontrollers. PC/104 and PC/104+ are examples of standards for ready-made computer boards intended for small, low-volume embedded and ruggedized systems. These are mostly x86-based and often physically small compared to
6018-467: The earlier EEPROM was more expensive and less durable, making it unsuitable for low-cost mass-produced microcontrollers.) The same year, Atmel introduced the first microcontroller using Flash memory , a special type of EEPROM. Other companies rapidly followed suit, with both memory types. Nowadays microcontrollers are cheap and readily available for hobbyists, with large online communities around certain processors. In 2002, about 55% of all CPUs sold in
6120-409: The environment for both hardware and software tools may be very different. One common design style uses a small system module, perhaps the size of a business card, holding high density BGA chips such as an ARM -based system-on-a-chip processor and peripherals, external flash memory for storage, and DRAM for runtime memory. The module vendor will usually provide boot software and make sure there
6222-513: The event handlers are short and simple. These systems run a simple task in a main loop also, but this task is not very sensitive to unexpected delays. Sometimes the interrupt handler will add longer tasks to a queue structure. Later, after the interrupt handler has finished, these tasks are executed by the main loop. This method brings the system close to a multitasking kernel with discrete processes. Microcontroller unit A microcontroller ( MC , UC , or μC ) or microcontroller unit ( MCU )
SECTION 60
#17327982223756324-585: The first microprocessors, as engineers began recognizing that a complete computer processor system could be contained on several MOS LSI chips. The first multi-chip microprocessors, the Four-Phase Systems AL1 in 1969 and the Garrett AiResearch MP944 in 1970, were developed with multiple MOS LSI chips. The first single-chip microprocessor was the Intel 4004 , released in 1971. It was developed by Federico Faggin , using his silicon-gate MOS technology, along with Intel engineers Marcian Hoff and Stan Mazor , and Busicom engineer Masatoshi Shima . One of
6426-650: The first recognizably modern embedded systems was the Apollo Guidance Computer , developed ca. 1965 by Charles Stark Draper at the MIT Instrumentation Laboratory . At the project's inception, the Apollo guidance computer was considered the riskiest item in the Apollo project as it employed the then newly developed monolithic integrated circuits to reduce the computer's size and weight. An early mass-produced embedded system
6528-407: The following areas: Unless restricted to external debugging, the programmer can typically load and run software through the tools, view the code running in the processor, and start or stop its operation. The view of the code may be as high-level programming language , assembly code or mixture of both. Real-time operating systems often support tracing of operating system events. A graphical view
6630-473: The hardware: For high-volume systems such as mobile phones , minimizing cost is usually the primary design consideration. Engineers typically select hardware that is just good enough to implement the necessary functions. For low-volume or prototype embedded systems, general-purpose computers may be adapted by limiting the programs or by replacing the operating system with an RTOS. In 1978 National Electrical Manufacturers Association released ICS 3-1978,
6732-806: The heater on/off, etc. A dedicated pulse-width modulation (PWM) block makes it possible for the CPU to control power converters , resistive loads, motors , etc., without using many CPU resources in tight timer loops . A universal asynchronous receiver/transmitter (UART) block makes it possible to receive and transmit data over a serial line with very little load on the CPU. Dedicated on-chip hardware also often includes capabilities to communicate with other devices (chips) in digital formats such as Inter-Integrated Circuit ( I²C ), Serial Peripheral Interface ( SPI ), Universal Serial Bus ( USB ), and Ethernet . Microcontrollers may not implement an external address or data bus as they integrate RAM and non-volatile memory on
6834-529: The latter, sometimes the designation OTP was used, standing for "one-time programmable". In an OTP microcontroller, the PROM was usually of identical type as the EPROM, but the chip package had no quartz window; because there was no way to expose the EPROM to ultraviolet light, it could not be erased. Because the erasable versions required ceramic packages with quartz windows, they were significantly more expensive than
6936-417: The low-priced microcontrollers above from 2015 were all more expensive (with inflation calculated between 2018 and 2015 prices for those specific units) at: the 8-bit microcontroller could be bought for US$ 0.319 (1,000 units) or 2.6% higher, the 16-bit one for US$ 0.464 (1,000 units) or 21% higher, and the 32-bit one for US$ 0.503 (1,000 units, but at US$ 0.466 for 5,000) or 33% higher. On 21 June 2018,
7038-454: The main application, how close is the debugged system or application to the actual system or application, how expressive are the triggers that can be set for debugging (e.g., inspecting the memory when a particular program counter value is reached), and what can be inspected in the debugging process (such as, only memory, or memory and registers, etc.). From simplest to most sophisticated debugging techniques and systems are roughly grouped into
7140-495: The methods described below use the RESET line to enter programming mode. In order to avoid the chip accidentally entering such mode, it is advised to connect a pull-up resistor between the RESET pin and the positive power supply. The in-system programming (ISP) programming method is functionally performed through SPI , plus some twiddling of the Reset line. As long as the SPI pins of the AVR are not connected to anything disruptive,
7242-427: The microcontroller division's budget by over 25%. Most microcontrollers at this time had concurrent variants. One had EPROM program memory, with a transparent quartz window in the lid of the package to allow it to be erased by exposure to ultraviolet light. These erasable chips were often used for prototyping. The other variant was either a mask-programmed ROM or a PROM variant which was only programmable once. For
7344-432: The microcontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or it may be field-alterable flash or erasable read-only memory. Manufacturers have often produced special versions of their microcontrollers in order to help the hardware and software development of the target system. Originally these included EPROM versions that have
7446-411: The name AVR is not an acronym and does not stand for anything in particular. The creators of the AVR give no definitive answer as to what the term "AVR" stands for. However, it is commonly accepted that AVR stands for A lf and V egard's R ISC processor. Note that the use of "AVR" in this article generally refers to the 8-bit RISC line of Atmel AVR microcontrollers. The original AVR MCU was developed at
7548-474: The need to minimize the chip size against additional functionality. Microcontroller architectures vary widely. Some designs include general-purpose microprocessor cores, with one or more ROM, RAM, or I/O functions integrated onto the package. Other designs are purpose-built for control applications. A microcontroller instruction set usually has many instructions intended for bit manipulation (bit-wise operations) to make control programs more compact. For example,
7650-2299: The network to cell phones at the end user . Computer networking uses dedicated routers and network bridges to route data. Consumer electronics include MP3 players , television sets , mobile phones , video game consoles , digital cameras , GPS receivers, and printers . Household appliances, such as microwave ovens , washing machines and dishwashers , include embedded systems to provide flexibility, efficiency and features. Advanced heating, ventilation, and air conditioning (HVAC) systems use networked thermostats to more accurately and efficiently control temperature that can change by time of day and season . Home automation uses wired- and wireless-networking that can be used to control lights, climate, security, audio/visual, surveillance, etc., all of which use embedded devices for sensing and controlling. Transportation systems from flight to automobiles increasingly use embedded systems. New airplanes contain advanced avionics such as inertial guidance systems and GPS receivers that also have considerable safety requirements. Spacecraft rely on astrionics systems for trajectory correction. Various electric motors — brushless DC motors , induction motors and DC motors — use electronic motor controllers . Automobiles , electric vehicles , and hybrid vehicles increasingly use embedded systems to maximize efficiency and reduce pollution. Other automotive safety systems using embedded systems include anti-lock braking system (ABS), electronic stability control (ESC/ESP), traction control (TCS) and automatic four-wheel drive . Medical equipment uses embedded systems for monitoring , and various medical imaging ( positron emission tomography (PET), single-photon emission computed tomography (SPECT), computed tomography (CT), and magnetic resonance imaging (MRI) for non-invasive internal inspections. Embedded systems within medical equipment are often powered by industrial computers. Embedded systems are used for safety-critical systems in aerospace and defense industries. Unless connected to wired or wireless networks via on-chip 3G cellular or other methods for IoT monitoring and control purposes, these systems can be isolated from hacking and thus be more secure. For fire safety,
7752-435: The output state, GPIO pins can drive external devices such as LEDs or motors, often indirectly, through external power electronics. Many embedded systems need to read sensors that produce analog signals. This is the purpose of the analog-to-digital converter (ADC). Since processors are built to interpret and process digital data, i.e. 1s and 0s, they are not able to do anything with the analog signals that may be sent to it by
7854-539: The outside world via peripherals , such as: As with other software, embedded system designers use compilers , assemblers , and debuggers to develop embedded system software. However, they may also use more specific tools: Software tools can come from several sources: As the complexity of embedded systems grows, higher-level tools and operating systems are migrating into machinery where it makes sense. For example, cellphones , personal digital assistants and other consumer computers often need significant software that
7956-596: The physical world as edge devices . Some microcontrollers may use four-bit words and operate at frequencies as low as 4 kHz for low power consumption (single-digit milliwatts or microwatts). They generally have the ability to retain functionality while waiting for an event such as a button press or other interrupt ; power consumption while sleeping (CPU clock and most peripherals off) may be just nanowatts, making many of them well suited for long lasting battery applications. Other microcontrollers may serve performance-critical roles, where they may need to act more like
8058-409: The pin function selected by software. This allows a part to be used in a wider variety of applications than if pins had dedicated functions. Microcontrollers have proved to be highly popular in embedded systems since their introduction in the 1970s. Some microcontrollers use a Harvard architecture : separate memory buses for instructions and data, allowing accesses to take place concurrently. Where
8160-468: The pinout was identical. The AVR 8-bit microcontroller architecture was introduced in 1997. By 2003, Atmel had shipped 500 million AVR flash microcontrollers. The Arduino platform, developed for simple electronics projects, was released in 2005 and featured ATmega8 AVR microcontrollers. The AVR is a modified Harvard architecture machine, where program and data are stored in separate physical memory systems that appear in different address spaces, but having
8262-450: The prevalence of embedded systems increased. A comparatively low-cost microcontroller may be programmed to fulfill the same role as a large number of separate components. With microcontrollers, it became feasible to replace, even in consumer products, expensive knob-based analog components such as potentiometers and variable capacitors with up/down buttons or knobs read out by a microprocessor. Although in this context an embedded system
8364-1244: The processor(s) used may be types ranging from general purpose to those specialized in a certain class of computations, or even custom designed for the application at hand. A common standard class of dedicated processors is the digital signal processor (DSP). Since the embedded system is dedicated to specific tasks, design engineers can optimize it to reduce the size and cost of the product and increase its reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale . Embedded systems range in size from portable personal devices such as digital watches and MP3 players to bigger machines like home appliances , industrial assembly lines , robots , transport vehicles, traffic light controllers , and medical imaging systems. Often they constitute subsystems of other machines like avionics in aircraft and astrionics in spacecraft . Large installations like factories , pipelines , and electrical grids rely on multiple embedded systems networked together. Generalized through software customization, embedded systems such as programmable logic controllers frequently comprise their functional units. Embedded systems range from those low in complexity, with
8466-586: The program memory is usually indicated in the naming of the device itself (e.g., the ATmega64x line has 64 KB of flash, while the ATmega32x line has 32 KB). There is no provision for off-chip program memory; all code executed by the AVR core must reside in the on-chip flash. However, this limitation does not apply to the AT94 FPSLIC AVR/FPGA chips. The data address space consists of
8568-451: The register file and the first 64 I/O registers, all can also be addressed and manipulated as if they were in SRAM. The very smallest of the tinyAVR variants use a reduced architecture with only 16 registers (r0 through r15 are omitted) which are not addressable as memory locations. I/O memory begins at address 0000 16 , followed by SRAM. In addition, these devices have slight deviations from
8670-415: The same basic core, but with different peripheral and memory combinations. Compatibility between chips in each family is fairly good, although I/O controller features may vary. See external links for sites relating to AVR development. AVRs offer a wide range of features: There are many means to load program code into an AVR chip. The methods to program AVR chips varies from AVR family to family. Most of
8772-461: The same chip as the CPU. Using fewer pins, the chip can be placed in a much smaller, cheaper package. Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but often results in decreased net cost of the embedded system as a whole. Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU and external peripherals, having fewer chips typically allows
8874-514: The size and cost compared to a design that uses a separate microprocessor , memory, and input/output devices, microcontrollers make digital control of more devices and processes practical. Mixed-signal microcontrollers are common, integrating analog components needed to control non-digital electronic systems. In the context of the Internet of Things , microcontrollers are an economical and popular means of data collection , sensing and actuating
8976-434: The source of the interrupt, before returning to the original instruction sequence. Possible interrupt sources are device-dependent and often include events such as an internal timer overflow, completing an analog-to-digital conversion, a logic-level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery devices, interrupts may also wake
9078-411: The standard AVR instruction set. Most notably, the direct load/store instructions (LDS/STS) have been reduced from 2 words (32 bits) to 1 word (16 bits), limiting the total direct addressable memory (the sum of both I/O and SRAM) to 128 bytes. Conversely, the indirect load instruction's (LD) 16-bit address space is expanded to also include non-volatile memory such as Flash and configuration bits; therefore,
9180-548: The system hardware to be simplified to reduce costs. Embedded systems are not always standalone devices. Many embedded systems are a small part within a larger device that serves a more general purpose. For example, the Gibson Robot Guitar features an embedded system for tuning the strings, but the overall purpose of the Robot Guitar is to play music. Similarly, an embedded system in an automobile provides
9282-540: The systems can be designed to have a greater ability to handle higher temperatures and continue to operate. In dealing with security, the embedded systems can be self-sufficient and be able to deal with cut electrical and communication systems. Miniature wireless devices called motes are networked wireless sensors. Wireless sensor networking makes use of miniaturization made possible by advanced integrated circuit (IC) design to couple full wireless subsystems to sophisticated sensors, enabling people and companies to measure
9384-788: The task. The AVR instruction set is more orthogonal than those of most eight-bit microcontrollers, in particular the 8051 clones and PIC microcontrollers with which AVR competes today. However, it is not completely regular: Additionally, some chip-specific differences affect code generation. Code pointers (including return addresses on the stack) are two bytes long on chips with up to 128 KB of flash memory, but three bytes long on larger chips; not all chips have hardware multipliers; chips with over 8 KB of flash have branch and call instructions with longer ranges; and so forth. The mostly regular instruction set makes C (and even Ada) compilers fairly straightforward and efficient. GCC has included AVR support for quite some time, and that support
9486-778: The time of manufacture can be economical. These " mask-programmed " parts have the program laid down in the same way as the logic of the chip, at the same time. A customized microcontroller incorporates a block of digital logic that can be personalized for additional processing capability, peripherals and interfaces that are adapted to the requirements of the application. One example is the AT91CAP from Atmel . Microcontrollers usually contain from several to dozens of general purpose input/output pins ( GPIO ). GPIO pins are software configurable to either an input or an output state. When GPIO pins are configured to an input state, they are often used to read sensors or external signals. Configured to
9588-536: The total, and 4-/8-bit designs are forecast to be 28% of units sold that year. The 32-bit MCU market is expected to grow rapidly due to increasing demand for higher levels of precision in embedded-processing systems and the growth in connectivity using the Internet. [..] In the next few years, complex 32-bit MCUs are expected to account for over 25% of the processing power in vehicles. Cost to manufacture can be under US$ 0.10 per unit. Cost has plummeted over time, with
9690-576: The unique characteristics of microcontrollers. Some microcontrollers have environments to aid developing certain types of applications. Microcontroller vendors often make tools freely available to make it easier to adopt their hardware. Microcontrollers with specialty hardware may require their own non-standard dialects of C, such as SDCC for the 8051 , which prevent using standard tools (such as code libraries or static analysis tools) even for code unrelated to hardware features. Interpreters may also contain nonstandard features, such as MicroPython , although
9792-438: The widespread availability of cheap microcontroller programmers. The use of field-programmable devices on a microcontroller may allow field update of the firmware or permit late factory revisions to products that have been assembled but not yet shipped. Programmable memory also reduces the lead time required for deployment of a new product. Where hundreds of thousands of identical devices are required, using parts programmed at
9894-621: The world were 8-bit microcontrollers and microprocessors. Over two billion 8-bit microcontrollers were sold in 1997, and according to Semico, over four billion 8-bit microcontrollers were sold in 2006. More recently, Semico has claimed the MCU market grew 36.5% in 2010 and 12% in 2011. A typical home in a developed country is likely to have only four general-purpose microprocessors but around three dozen microcontrollers. A typical mid-range automobile has about 30 microcontrollers. They can also be found in many electrical devices such as washing machines, microwave ovens, and telephones. Historically,
9996-404: Was developed in the early 1960s. By 1964, MOS chips had reached higher transistor density and lower manufacturing costs than bipolar chips. MOS chips further increased in complexity at a rate predicted by Moore's law , leading to large-scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. The application of MOS LSI chips to computing was the basis for
10098-411: Was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems. Modern embedded systems are often based on microcontrollers (i.e. microprocessors with integrated memory and peripheral interfaces), but ordinary microprocessors (using external chips for memory and peripheral interface circuits) are also common, especially in more complex systems. In either case,
10200-442: Was followed by the 4-bit Intel 4040 , the 8-bit Intel 8008 , and the 8-bit Intel 8080 . All of these processors required several external chips to implement a working system, including memory and peripheral interface chips. As a result, the total system cost was several hundred (1970s US) dollars, making it impossible to economically computerize small appliances. MOS Technology introduced its sub-$ 100 microprocessors in 1975,
10302-436: Was targeted at embedded systems. During the early-to-mid-1970s, Japanese electronics manufacturers began producing microcontrollers for automobiles, including 4-bit MCUs for in-car entertainment , automatic wipers, electronic locks, and dashboard, and 8-bit MCUs for engine control. Partly in response to the existence of the single-chip TMS 1000, Intel developed a computer system on a chip optimized for control applications,
10404-670: Was the Autonetics D-17 guidance computer for the Minuteman missile , released in 1961. When the Minuteman II went into production in 1966, the D-17 was replaced with a new computer that represented the first high-volume use of integrated circuits. Since these early applications in the 1960s, embedded systems have come down in price and there has been a dramatic rise in processing power and functionality. An early microprocessor,
#374625