338
152-611: 238055 ENSG00000084674 ENSMUSG00000020609 P04114 E9Q414 NM_000384 NM_009693 NP_000375 NP_033823 Apolipoprotein B ( ApoB ) is a protein that in humans is encoded by the APOB gene . Its measurement is commonly used to detect risk of atherosclerotic cardiovascular disease. Apolipoprotein B is the primary apolipoprotein of chylomicrons , VLDL , Lp(a) , IDL , and LDL particles (LDL—commonly known as "bad cholesterol " when in reference to both heart disease and vascular disease in general), which
304-520: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of
456-469: A cis -acting element several thousand bp upstream determines which isoform is produced. As a result of the RNA editing, ApoB48 and ApoB100 share a common N-terminal sequence, but ApoB48 lacks ApoB100's C-terminal LDL receptor binding region. In fact, ApoB48 is so-called because it constitutes 48% of the sequence for ApoB100. ApoB 48 is a unique protein to chylomicrons from the small intestine. After most of
608-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.
760-465: A 2014 study from McGill University in Montreal, Canada which suggests that mice handled by men rather than women showed higher stress levels. Another study in 2016 suggested that gut microbiomes in mice may have an impact upon scientific research. Ethical concerns, as well as the cost, maintenance and relative inefficiency of animal research has encouraged development of alternative methods for
912-410: A 27-amino acid signal peptide and a 4536-amino acid mature protein. Both isoforms are coded by APOB and by a single mRNA transcript larger than 16 kb. ApoB48 is generated when a stop codon (UAA) at residue 2153 is created by RNA editing . There appears to be a trans -acting tissue-specific splicing gene that determines which isoform is ultimately produced. Alternatively, there is some evidence that
1064-531: A codon change creating an in-frame stop codon leading to translation of a truncated protein, ApoB48. This stop codon results in the translation of a protein that lacks the carboxyl terminus which contains the protein's LDLR binding domain. The full protein ApoB100 which has nearly 4500 amino acids is present in VLDL and LDL. Since many parts of ApoB100 are in an amphipathic condition, the structure of some of its domains
1216-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,
1368-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on
1520-851: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In
1672-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of
SECTION 10
#17327718740681824-591: A local review board called the Institutional Animal Care and Use Committee (IACUC). All laboratory experiments involving living animals are reviewed and approved by this committee. In addition to proving the potential for benefit to human health, minimization of pain and distress, and timely and humane euthanasia, experimenters must justify their protocols based on the principles of Replacement, Reduction and Refinement. "Replacement" refers to efforts to engage alternatives to animal use. This includes
1976-406: A lower total neutrophil fraction in the blood , a lower neutrophil enzymatic capacity, lower activity of the complement system , and a different set of pentraxins involved in the inflammatory process ; and lack genes for important components of the immune system, such as IL-8 , IL-37 , TLR10 , ICAM-3 , etc. Laboratory mice reared in specific-pathogen-free (SPF) conditions usually have
2128-547: A model for neuronal development by Sydney Brenner in 1963, and has been extensively used in many different contexts since then. C. elegans was the first multicellular organism whose genome was completely sequenced, and as of 2012, the only organism to have its connectome (neuronal "wiring diagram") completed. Arabidopsis thaliana is currently the most popular model plant. Its small stature and short generation time facilitates rapid genetic studies, and many phenotypic and biochemical mutants have been mapped. A. thaliana
2280-666: A nearly transparent body during early development, which provides unique visual access to the animal's internal anatomy during this time period. Zebrafish are used to study development, toxicology and toxicopathology, specific gene function and roles of signaling pathways. Other important model organisms and some of their uses include: T4 phage (viral infection), Tetrahymena thermophila (intracellular processes), maize ( transposons ), hydras ( regeneration and morphogenesis ), cats (neurophysiology), chickens (development), dogs (respiratory and cardiovascular systems), Nothobranchius furzeri (aging), non-human primates such as
2432-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by
2584-551: A portal from which to download sequences (DNA, RNA, or protein) or to access functional information on specific genes, for example the sub-cellular localization of the gene product or its physiological role. Many animal models serving as test subjects in biomedical research, such as rats and mice, may be selectively sedentary , obese and glucose intolerant . This may confound their use to model human metabolic processes and diseases as these can be affected by dietary energy intake and exercise . Similarly, there are differences between
2736-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using
2888-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters
3040-542: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although
3192-588: A rather immature immune system with a deficit of memory T cells . These mice may have limited diversity of the microbiota , which directly affects the immune system and the development of pathological conditions. Moreover, persistent virus infections (for example, herpesviruses ) are activated in humans, but not in SPF mice, with septic complications and may change the resistance to bacterial coinfections . “Dirty” mice are possibly better suitable for mimicking human pathologies. In addition, inbred mouse strains are used in
SECTION 20
#17327718740683344-416: A result of modified-LDL's toxic effect on vascular endothelium as well as its ability both to recruit immune effector cells and to promote platelet activation. The INTERHEART study found that the ApoB100 / ApoA1 ratio is more effective at predicting heart attack risk, in patients who had had an acute myocardial infarction, than either the ApoB100 or ApoA1 measure alone. ( ApoA1 is the major HDL protein.) In
3496-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit
3648-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),
3800-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate
3952-451: A specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in
4104-468: A unicellular green alga with well-studied genetics, is used to study photosynthesis and motility . C. reinhardtii has many known and mapped mutants and expressed sequence tags, and there are advanced methods for genetic transformation and selection of genes. Dictyostelium discoideum is used in molecular biology and genetics , and is studied as an example of cell communication , differentiation , and programmed cell death . Among invertebrates,
4256-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into
4408-432: A vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into
4560-506: A wide variety of experimental techniques and goals from many different levels of biology—from ecology , behavior and biomechanics , down to the tiny functional scale of individual tissues , organelles and proteins . Inquiries about the DNA of organisms are classed as genetic models (with short generation times, such as the fruitfly and nematode worm), experimental models, and genomic parsimony models, investigating pivotal position in
4712-548: A wider assortment of lineages on the tree of life . The primary reason for the use of model organisms in research is the evolutionary principle that all organisms share some degree of relatedness and genetic similarity due to common ancestry . The study of taxonomic human relatives, then, can provide a great deal of information about mechanism and disease within the human body that can be useful in medicine. Various phylogenetic trees for vertebrates have been constructed using comparative proteomics , genetics, genomics as well as
Apolipoprotein B - Misplaced Pages Continue
4864-412: Is Escherichia coli ( E. coli ), which has been intensively investigated for over 60 years. It is a common, gram-negative gut bacterium which can be grown and cultured easily and inexpensively in a laboratory setting. It is the most widely used organism in molecular genetics , and is an important species in the fields of biotechnology and microbiology , where it has served as the host organism for
5016-441: Is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workings of other organisms. Model organisms are widely used to research human disease when human experimentation would be unfeasible or unethical . This strategy is made possible by the common descent of all living organisms, and
5168-505: Is also a regulatory sequence 3′ to the editing site. The active site of ApoBEC-1, the catalytic component of the editing holoenzyme is thought to bind to an AU rich region of the mooring sequence with the aid of ACF in binding the complex to the mRNA. The edited cytidine residue is located at nucleotide 6666 located in exon 26 of the gene. Editing at this site results in a codon change from a Glutamine codon (CAA) to an inframe stop codon (UAA). Computer modelling has detected for editing to occur,
5320-419: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Model organisms A model organism
5472-480: Is dependent on underlying lipid conditions. However, it is known to have the same overall folding in LDL having five main domains. Recently the first structure of LDL at human body temperature in native condition has been found using cryo-electron microscopy at a resolution of 16 Angstrom. The overall folding of ApoB-100 has been confirmed and some heterogeneity in the local structure of its domains have been mapped. Editing
5624-439: Is difficult to build an animal model that perfectly reproduces the symptoms of depression in patients. Depression, as other mental disorders , consists of endophenotypes that can be reproduced independently and evaluated in animals. An ideal animal model offers an opportunity to understand molecular , genetic and epigenetic factors that may lead to depression. By using animal models, the underlying molecular alterations and
5776-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and
5928-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"
6080-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through
6232-402: Is known as the editing motif. These nucleotides (6662–6687) were determined to be essential by site specific mutagenesis experiments. An 11 nucleotide portion of this sequence 4–5 nucleotides downstream from the editing site is an important region known as the mooring sequence. A region called the spacer element is found 2–8 nucleotides between the edited nucleoside and this mooring sequence. There
Apolipoprotein B - Misplaced Pages Continue
6384-645: Is no substitute for a living organism when studying complex interactions in disease pathology or treatments. Debate about the ethical use of animals in research dates at least as far back as 1822 when the British Parliament under pressure from British and Indian intellectuals enacted the first law for animal protection preventing cruelty to cattle. This was followed by the Cruelty to Animals Act of 1835 and 1849, which criminalized ill-treating, over-driving, and torturing animals. In 1876, under pressure from
6536-431: Is no useful in vitro model system available. Model organisms are drawn from all three domains of life, as well as viruses . One of the first model systems for molecular biology was the bacterium Escherichia coli ( E. coli ), a common constituent of the human digestive system. The mouse ( Mus musculus ) has been used extensively as a model organism and is associated with many important biological discoveries of
6688-1080: Is not sufficient for the editing of ApoB mRNA and requires at least one of these auxiliary factors, APOBEC1 complementation factor (A1CF) for editing to occur. A1CF contains 3 non identical repeats. It acts as the RNA binding subunit and directs ApoBEC-1 to the ApoB mRNA downstream of the edited cytidine. Other auxiliary factors are known to be part of the holoenzyme. Some of these proteins have been identified. these are CUG binding protein 2 ( CUGBP2 ), SYNCRIP (glycine-arginine-tyrosine-rich RNA binding protein, GRY-RBP), heterogeneous nuclear ribonucleoprotein (hnRNP)-C1 ( HNRNPC ), ApoBEC-1 binding protein ABBP1 ( HNRNPAB ), ABBP2, KH-type splicing regulatory binding protein ( KHSRP ), Bcl-2-associated athanogene 4 ( BAG4 ), and auxiliary factor (AUX)240. All these proteins have been identified using detection assays and have all been demonstrated to interact with either ApoBEC-1, A1CF, or ApoB RNA. The function of these auxiliary proteins in
6840-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with
6992-420: Is particularly useful as a toxicology model, and as a neurological model and source of primary cell cultures, owing to the larger size of organs and suborganellar structures relative to the mouse, while eggs and embryos from Xenopus tropicalis and Xenopus laevis (African clawed frog) are used in developmental biology, cell biology, toxicology, and neuroscience. Likewise, the zebrafish ( Danio rerio ) has
7144-599: Is regulated by cis-regulatory elements in the APOB 5′ UTR and 3′ UTR. The mRNA encoding this protein is subject to cytidine to uridine (C to U) site-specific RNA editing . ApoB100 and ApoB48 are encoded by the same gene, however, the differences in the translated proteins are not due to alternative splicing but are due to the tissue-specific RNA editing event. ApoB mRNA editing was the first example of editing observed in vertebrates. Editing of ApoB mRNA occurs in all placental mammals . Editing occurs post transcriptionally as
7296-404: Is responsible for carrying fat molecules ( lipids ), including cholesterol , around the body to all cells within all tissues . While all the functional roles of ApoB within the LDL (and all larger) particles remain somewhat unclear, it is the primary organizing protein (of the entire complex shell enclosing/carrying fat molecules within) component of the particles and is absolutely required for
7448-506: Is restricted to those transcripts expressed in the small intestine . This shorter version of the protein has a function specific to the small intestine. The main function of the full length liver expressed ApoB100 is as a ligand for activation of the LDL-R. However, editing results in a protein lacking this LDL-R binding region of the protein. This alters the function of the protein and the shorter ApoB48 protein as specific functions relative to
7600-479: Is similar to a human condition. These test conditions are often termed as animal models of disease . The use of animal models allows researchers to investigate disease states in ways which would be inaccessible in a human patient, performing procedures on the non-human animal that imply a level of harm that would not be considered ethical to inflict on a human. The best models of disease are similar in etiology (mechanism of cause) and phenotype (signs and symptoms) to
7752-496: Is studied, again, because it is easy to grow for an animal, has various visible congenital traits and has a polytene (giant) chromosome in its salivary glands that can be examined under a light microscope. The roundworm Caenorhabditis elegans is studied because it has very defined development patterns involving fixed numbers of cells, and it can be rapidly assayed for abnormalities. Animal models serving in research may have an existing, inbred or induced disease or injury that
SECTION 50
#17327718740687904-486: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form
8056-481: Is the dominant ApoB protein in the small intestine of most mammals. It is a key protein in the exogenous pathway of lipoprotein metabolism. Intestinal proteins containing ApoB48 are metabolized to chylomicron remnant particles which are taken up by remnant receptors. Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform
8208-524: Is the fact that ApoB100, one per particle, reflects actual lipoprotein particle concentration (independent of their cholesterol, or other lipid content). In this way, one can understand that the number of ApoB100-containing lipoprotein particles which can carry lipids into the artery walls is a key determinant, driver of atherosclerosis and heart disease. One way to explain the above is to consider that large numbers of lipoprotein particles, and, in particular, large numbers of LDL particles, lead to competition at
8360-438: Is the shunting of LDL particles to these scavenger receptors. Scavenger receptors typically are found on macrophages , with cholesterol-laden macrophages being better known as " foam cells ". Foam cells characterize atherosclerotic lesions. In addition to this possible mechanism of foam cell generation, an increase in the levels of chemically modified LDL particles may also lead to an increase in endothelial damage. This occurs as
8512-477: Is used with the aim of solving medical problems such as Alzheimer's disease, AIDS, multiple sclerosis, spinal cord injury, many headaches, and other conditions in which there is no useful in vitro model system available. Models are those organisms with a wealth of biological data that make them attractive to study as examples for other species and/or natural phenomena that are more difficult to study directly. Continual research on these organisms focuses on
8664-449: The NIH starting in the early 1970s). However, primarily for historic cost/complexity reasons, cholesterol, and estimated LDL-cholesterol by calculation , remains the most commonly promoted lipid test for the risk factor of atherosclerosis. ApoB is routinely measured using immunoassays such as ELISA or nephelometry . Refined and automated NMR methods allow measurement distinctions between
8816-515: The National Anti-Vivisection Society , the Cruelty to Animals Act was amended to include regulations governing the use of animals in research. This new act stipulated that 1) experiments must be proven absolutely necessary for instruction, or to save or prolong human life; 2) animals must be properly anesthetized; and 3) animals must be killed as soon as the experiment is over. Today, these three principles are central to
8968-492: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled
9120-410: The fruit fly Drosophila melanogaster is famous as the subject of genetics experiments by Thomas Hunt Morgan and others. They are easily raised in the lab, with rapid generations, high fecundity , few chromosomes , and easily induced observable mutations. The nematode Caenorhabditis elegans is used for understanding the genetic control of development and physiology. It was first proposed as
9272-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis
SECTION 60
#17327718740689424-622: The rhesus macaque and chimpanzee ( hepatitis , HIV , Parkinson's disease , cognition , and vaccines ), and ferrets ( SARS-CoV-2 ) The organisms below have become model organisms because they facilitate the study of certain characters or because of their genetic accessibility. For example, E. coli was one of the first organisms for which genetic techniques such as transformation or genetic manipulation has been developed. The genomes of all model species have been sequenced , including their mitochondrial / chloroplast genomes. Model organism databases exist to provide researchers with
9576-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,
9728-497: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in
9880-572: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions
10032-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )
10184-561: The 20th and 21st centuries. Other examples include baker's yeast ( Saccharomyces cerevisiae ), the T4 phage virus, the fruit fly Drosophila melanogaster , the flowering plant Arabidopsis thaliana , and guinea pigs ( Cavia porcellus ). Several of the bacterial viruses ( bacteriophage ) that infect E. coli also have been very useful for the study of gene structure and gene regulation (e.g. phages Lambda and T4 ). Disease models are divided into three categories: homologous animals have
10336-503: The ApoB100 concentration. The same technique can be applied to individual lipoprotein classes (e.g. LDL) and thereby enable one to count them as well. It is well established that ApoB100 levels are associated with coronary heart disease , they are a far better predictor of it than are LDL-C concentrations. Reason: LDL-C does not reflect actual particle concentrations & cholesterol cannot dissolve or move (in water) without particles to carry it. A simple way to understand this observation
10488-447: The ApoB100 receptor (i.e. LDL receptor) of peripheral cells. Since such competition will prolong the residence time of LDL particles in the circulation, it may lead to greater opportunity for them to undergo oxidation and/or other chemical modifications. Such modifications may lessen the particles' ability to be cleared by the classic LDL receptor and/or increase their ability to interact with so-called "scavenger" receptors. The net result
10640-549: The DBA ("dilute, brown and non-agouti") inbred mouse strain and the systematic generation of other inbred strains. The mouse has since been used extensively as a model organism and is associated with many important biological discoveries of the 20th and 21st centuries. In the late 19th century, Emil von Behring isolated the diphtheria toxin and demonstrated its effects in guinea pigs. He went on to develop an antitoxin against diphtheria in animals and then in humans, which resulted in
10792-519: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by
10944-622: The United States by 1965. It has been estimated that developing and producing the vaccines required the use of 100,000 rhesus monkeys, with 65 doses of vaccine produced from each monkey. Sabin wrote in 1992, "Without the use of animals and human beings, it would have been impossible to acquire the important knowledge needed to prevent much suffering and premature death not only among humans, but also among animals." Other 20th-century medical advances and treatments that relied on research performed in animals include organ transplant techniques,
11096-430: The United States. Subsequent research in model organisms led to further medical advances, such as Frederick Banting 's research in dogs, which determined that the isolates of pancreatic secretion could be used to treat dogs with diabetes . This led to the 1922 discovery of insulin (with John Macleod ) and its use in treating diabetes, which had previously meant death. John Cade 's research in guinea pigs discovered
11248-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how
11400-456: The active site of APOBEC1 as well as for binding of ACF and other auxiliary factors associated with the editosome. Editing of ApoB mRNA in humans is tissue regulated, with ApoB48 being the main ApoB protein of the small intestine in humans. It occurs in lesser amounts in the colon, kidney and stomach along with the non edited version. Editing is also developmentally regulated with the non edited version only being translated early in development but
11552-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of
11704-607: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are
11856-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that
12008-438: The anticonvulsant properties of lithium salts, which revolutionized the treatment of bipolar disorder , replacing the previous treatments of lobotomy or electroconvulsive therapy. Modern general anaesthetics, such as halothane and related compounds, were also developed through studies on model organisms, and are necessary for modern, complex surgical operations. In the 1940s, Jonas Salk used rhesus monkey studies to isolate
12160-457: The basic knowledge in fields such as human physiology and biochemistry , and has played significant roles in fields such as neuroscience and infectious disease . For example, the results have included the near- eradication of polio and the development of organ transplantation , and have benefited both humans and animals. From 1910 to 1927, Thomas Hunt Morgan 's work with the fruit fly Drosophila melanogaster identified chromosomes as
12312-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,
12464-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play
12616-420: The causal relationship between genetic or environmental alterations and depression can be examined, which would afford a better insight into pathology of depression. In addition, animal models of depression are indispensable for identifying novel therapies for depression. Model organisms are drawn from all three domains of life, as well as viruses . The most widely studied prokaryotic model organism
12768-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis
12920-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in
13072-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and
13224-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin
13376-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by
13528-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in
13680-439: The conservation of metabolic and developmental pathways and genetic material over the course of evolution . Research using animal models has been central to most of the achievements of modern medicine. It has contributed most of the basic knowledge in fields such as human physiology and biochemistry , and has played significant roles in fields such as neuroscience and infectious disease . The results have included
13832-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in
13984-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of
14136-420: The edited Cytidine is located in a loop. The selection of the edited cytidine is also highly dependent on this secondary structure of the surrounding RNA. There are also some indications that this loop region is formed between the mooring sequence and the 3′ regulatory region of the ApoB mRNA. The predicted secondary structure formed by ApoB mRNA is thought to allow for contact between the residue to be edited and
14288-422: The edited form increases during development in the tissues where editing can occur. Editing levels of ApoB mRNA have been shown to vary in response to changes in diet. exposure to alcohol and hormone levels. ApoB mRNA editing also occurs in mice, and rats. In contrast to humans editing occurs in liver in mice and rats up to a frequency of 65%. It has not been observed in birds or lesser species. Editing results in
14440-462: The editing complex are unknown. As well as editing ApoB mRNA, the ApoBEC-1 editsome also edits the mRNA of NF1 . mRNA editing of ApoB mRNA is the best defined example of this type of C to U RNA editing in humans. Despite being a 14,000 residue long transcript, a single cytidine is targeted for editing. Within the ApoB mRNA a sequence consisting of 26 nucleotides necessary for editing is found. This
14592-451: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as
14744-533: The evolutionary tree. Historically, model organisms include a handful of species with extensive genomic research data, such as the NIH model organisms. Often, model organisms are chosen on the basis that they are amenable to experimental manipulation. This usually will include characteristics such as short life-cycle , techniques for genetic manipulation ( inbred strains, stem cell lines, and methods of transformation ) and non-specialist living requirements. Sometimes,
14896-455: The first to perform experiments on living animals. Discoveries in the 18th and 19th centuries included Antoine Lavoisier 's use of a guinea pig in a calorimeter to prove that respiration was a form of combustion, and Louis Pasteur 's demonstration of the germ theory of disease in the 1880s using anthrax in sheep. Research using animal models has been central to most of the achievements of modern medicine. It has contributed most of
15048-419: The formation of these particles. What is also clear is that the ApoB on the LDL particle acts as a ligand for LDL receptors in various cells throughout the body (i.e., less formally, ApoB indicates fat-carrying particles are ready to enter any cells with ApoB receptors and deliver fats carried within into the cells). Through mechanisms only partially understood, high levels of ApoB, especially associated with
15200-534: The general population this remains unclear although in a recent study ApoB was the strongest risk marker for cardiovascular events. A Mediterranean diet is recommended as a means of lowering Apolipoprotein B. ApoB has been shown to interact with apo(a) , PPIB , Calcitonin receptor and HSP90B1 . Interaction of ApoB with proteoglycans , collagen , and fibronectin is believed to cause atherosclerosis . Click on genes, proteins and metabolites below to link to respective articles. The expression of APOB
15352-550: The genome arrangement facilitates the sequencing of the model organism's genome, for example, by being very compact or having a low proportion of junk DNA (e.g. yeast , arabidopsis , or pufferfish ). When researchers look for an organism to use in their studies, they look for several traits. Among these are size, generation time , accessibility, manipulation, genetics, conservation of mechanisms, and potential economic benefit. As comparative molecular biology has become more common, some researchers have sought model organisms from
15504-430: The geochemical and fossil record. These estimations tell us that humans and chimpanzees last shared a common ancestor about 6 million years ago (mya). As our closest relatives, chimpanzees have a lot of potential to tell us about mechanisms of disease (and what genes may be responsible for human intelligence). However, chimpanzees are rarely used in research and are protected from highly invasive procedures. Rodents are
15656-563: The guidance of animal models. Treatments for animal diseases have also been developed, including for rabies , anthrax , glanders , feline immunodeficiency virus (FIV), tuberculosis , Texas cattle fever, classical swine fever (hog cholera), heartworm , and other parasitic infections . Animal experimentation continues to be required for biomedical research, and is used with the aim of solving medical problems such as Alzheimer's disease, AIDS, multiple sclerosis, spinal cord injury, many headaches, and other conditions in which there
15808-540: The heart-lung machine, antibiotics , and the whooping cough vaccine. In researching human disease , model organisms allow for better understanding the disease process without the added risk of harming an actual human. The species of the model organism is usually chosen so that it reacts to disease or its treatment in a way that resembles human physiology , even though care must be taken when generalizing from one organism to another. However, many drugs, treatments and cures for human diseases are developed in part with
15960-428: The heart-lung machine, antibiotics , and the whooping cough vaccine. Treatments for animal diseases have also been developed, including for rabies , anthrax , glanders , feline immunodeficiency virus (FIV), tuberculosis , Texas cattle fever, classical swine fever (hog cholera), heartworm , and other parasitic infections . Animal experimentation continues to be required for biomedical research, and
16112-592: The higher LDL particle concentrations, are the primary driver of plaques that cause vascular disease ( atherosclerosis ), commonly first becoming obviously symptomatic as heart disease , stroke and many other body wide complications after decades of progression. There is considerable evidence that concentrations of ApoB and especially the NMR assay (specific for LDL-particle concentrations) are superior indicators of vascular/heart disease driving physiology than either total cholesterol or LDL-cholesterol (as long promoted by
16264-412: The host cells for propagation. In eukaryotes , several yeasts, particularly Saccharomyces cerevisiae ("baker's" or "budding" yeast), have been widely used in genetics and cell biology , largely because they are quick and easy to grow. The cell cycle in a simple yeast is very similar to the cell cycle in humans and is regulated by homologous proteins. The fruit fly Drosophila melanogaster
16416-904: The human equivalent. However complex human diseases can often be better understood in a simplified system in which individual parts of the disease process are isolated and examined. For instance, behavioral analogues of anxiety or pain in laboratory animals can be used to screen and test new drugs for the treatment of these conditions in humans. A 2000 study found that animal models concorded (coincided on true positives and false negatives) with human toxicity in 71% of cases, with 63% for nonrodents alone and 43% for rodents alone. In 1987, Davidson et al. suggested that selection of an animal model for research be based on nine considerations. These include 1) appropriateness as an analog, 2) transferability of information, 3) genetic uniformity of organisms, where applicable, 4) background knowledge of biological properties, 5) cost and availability, 6) generalizability of
16568-621: The immune systems of model organisms and humans that lead to significantly altered responses to stimuli, although the underlying principles of genome function may be the same. The impoverished environments inside standard laboratory cages deny research animals of the mental and physical challenges are necessary for healthy emotional development. Without day-to-day variety, risks and rewards, and complex environments, some have argued that animal models are irrelevant models of human experience. Mice differ from humans in several immune properties: mice are more resistant to some toxins than humans; have
16720-408: The laboratory. Some examples include: Spontaneous models refer to diseases that are analogous to human conditions that occur naturally in the animal being studied. These models are rare, but informative. Negative models essentially refer to control animals, which are useful for validating an experimental result. Orphan models refer to diseases for which there is no human analog and occur exclusively in
16872-534: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to
17024-598: The laws and guidelines governing the use of animals and research. In the U.S., the Animal Welfare Act of 1970 (see also Laboratory Animal Welfare Act ) set standards for animal use and care in research. This law is enforced by APHIS's Animal Care program. In academic settings in which NIH funding is used for animal research, institutions are governed by the NIH Office of Laboratory Animal Welfare (OLAW). At each site, OLAW guidelines and standards are upheld by
17176-678: The lipids in the chylomicron have been absorbed, ApoB48 returns to the liver as part of the chylomicron remnant, where it is endocytosed and degraded. Very low-density lipoproteins and low-density lipoproteins interfere with the quorum sensing system that upregulates genes required for invasive Staphylococcus aureus infection. The mechanism of antagonism entails binding ApoB, to a S. aureus autoinducer pheromone, preventing signaling through its receptor. Mice deficient in ApoB are more susceptible to invasive bacterial infection. Overproduction of apolipoprotein B can result in lipid-induced endoplasmic reticulum stress and insulin resistance in
17328-409: The liver. ApoB100 is found in lipoproteins originating from the liver ( VLDL , IDL , LDL ). Importantly, there is one ApoB100 molecule per hepatic-derived lipoprotein. Hence, using that fact, one can quantify the number of lipoprotein particles by noting the total ApoB100 concentration in the circulation. Since there is one and only one ApoB100 per particle, the number of particles is reflected by
17480-416: The mApoB gene show the opposite effect, being resistant to hypercholesterolemia . Mice containing no functional copies of the gene are not viable. The protein occurs in the plasma in two main isoforms, ApoB48 and ApoB100. The first is synthesized exclusively by the small intestine , the second by the liver . ApoB-100 is the largest of the apoB group of proteins, consisting of 4563 amino acids, including
17632-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of
17784-412: The majority of work with recombinant DNA . Simple model eukaryotes include baker's yeast ( Saccharomyces cerevisiae ) and fission yeast ( Schizosaccharomyces pombe ), both of which share many characters with higher cells, including those of humans. For instance, many cell division genes that are critical for the development of cancer have been discovered in yeast. Chlamydomonas reinhardtii ,
17936-742: The many different ApoB particles. High levels of ApoB are related to heart disease. Hypobetalipoproteinemia is a genetic disorder that can be caused by a mutation in the ApoB gene, APOB . Abetalipoproteinaemia is usually caused by a mutation in the MTP gene, MTP . Mutations in gene APOB100 can also cause familial hypercholesterolemia , a hereditary (autosomal dominant) form of metabolic disorder hypercholesterolemia . Mice have been used as model organisms in ApoB study as they express an equivalent protein known as mouse ApoB (mApoB). Mice overexpressing mApoB have increased levels of LDL and decreased levels of HDL . Mice containing only one functional copy of
18088-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis
18240-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in
18392-479: The modern methods of immunization and largely ended diphtheria as a threatening disease. The diphtheria antitoxin is famously commemorated in the Iditarod race, which is modeled after the delivery of antitoxin in the 1925 serum run to Nome . The success of animal studies in producing the diphtheria antitoxin has also been attributed as a cause for the decline of the early 20th-century opposition to animal research in
18544-550: The most common animal models. Phylogenetic trees estimate that humans and rodents last shared a common ancestor ~80-100mya. Despite this distant split, humans and rodents have far more similarities than they do differences. This is due to the relative stability of large portions of the genome, making the use of vertebrate animals particularly productive. Genomic data is used to make close comparisons between species and determine relatedness. Humans share about 99% of their genome with chimpanzees (98.7% with bonobos) and over 90% with
18696-497: The most virulent forms of the polio virus, which led to his creation of a polio vaccine . The vaccine, which was made publicly available in 1955, reduced the incidence of polio 15-fold in the United States over the following five years. Albert Sabin improved the vaccine by passing the polio virus through animal hosts, including monkeys; the Sabin vaccine was produced for mass consumption in 1963, and had virtually eradicated polio in
18848-436: The mouse. With so much of the genome conserved across species, it is relatively impressive that the differences between humans and mice can be accounted for in approximately six thousand genes (of ~30,000 total). Scientists have been able to take advantage of these similarities in generating experimental and predictive models of human disease. There are many model organisms. One of the first model systems for molecular biology
19000-494: The nascent polynucleotides do not contain edited nucleosides. C to U editing of ApoB mRNA requires an editing complex or holoenzyme (editosome) consisting of the C to U-editing enzyme Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (ApoBEC-1) as well as other auxiliary factors. ApoBEC-1 is a protein that in humans is encoded by the APOBEC1 gene.[1]It is a member of the cytidine deaminase family. ApoBEC-1 alone
19152-463: The near- eradication of polio and the development of organ transplantation , and have benefited both humans and animals. From 1910 to 1927, Thomas Hunt Morgan 's work with the fruit fly Drosophila melanogaster identified chromosomes as the vector of inheritance for genes, and Eric Kandel wrote that Morgan's discoveries "helped transform biology into an experimental science". Research in model organisms led to further medical advances, such as
19304-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported
19456-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of
19608-454: The overwhelming majority of studies, while the human population is heterogeneous, pointing to the importance of studies in interstrain hybrid, outbred , and nonlinear mice. Some studies suggests that inadequate published data in animal testing may result in irreproducible research, with missing details about how experiments are done omitted from published papers or differences in testing that may introduce bias. Examples of hidden bias include
19760-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by
19912-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on
20064-451: The production of the diphtheria antitoxin and the 1922 discovery of insulin and its use in treating diabetes, which had previously meant death. Modern general anaesthetics such as halothane were also developed through studies on model organisms, and are necessary for modern, complex surgical operations. Other 20th-century medical advances and treatments that relied on research performed in animals include organ transplant techniques,
20216-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,
20368-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since
20520-505: The results, 7) ease of and adaptability to experimental manipulation, 8) ecological consequences, and 9) ethical implications. Animal models can be classified as homologous, isomorphic or predictive. Animal models can also be more broadly classified into four categories: 1) experimental, 2) spontaneous, 3) negative, 4) orphan. Experimental models are most common. These refer to models of disease that resemble human conditions in phenotype or response to treatment but are induced artificially in
20672-476: The same causes, symptoms and treatment options as would humans who have the same disease, isomorphic animals share the same symptoms and treatments, and predictive models are similar to a particular human disease in only a couple of aspects, but are useful in isolating and making predictions about mechanisms of a set of disease features. The use of animals in research dates back to ancient Greece , with Aristotle (384–322 BCE) and Erasistratus (304–258 BCE) among
20824-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows
20976-581: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes
21128-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to
21280-473: The small intestine. ApoB48 is identical to the amino-terminal 48% of ApoB100. The function of this isoform is in fat absorption of the small intestine and is involved in the synthesis, assembly and secretion of chylomicrons . These chylomicrons transport dietary lipids to tissues while the remaining chylomicrons along with associated residual lipids are in 2–3 hours taken up by the liver via the interaction of apolipoprotein E (ApoE) with lipoprotein receptors. It
21432-469: The species studied. The increase in knowledge of the genomes of non-human primates and other mammals that are genetically close to humans is allowing the production of genetically engineered animal tissues, organs and even animal species which express human diseases, providing a more robust model of human diseases in an animal model. Animal models observed in the sciences of psychology and sociology are often termed animal models of behavior . It
21584-581: The study of disease. Cell culture, or in vitro studies, provide an alternative that preserves the physiology of the living cell, but does not require the sacrifice of an animal for mechanistic studies. Human, inducible pluripotent stem cells can also elucidate new mechanisms for understanding cancer and cell regeneration. Imaging studies (such as MRI or PET scans) enable non-invasive study of human subjects. Recent advances in genetics and genomics can identify disease-associated genes, which can be targeted for therapies. Many biomedical researchers argue that there
21736-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in
21888-716: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are
22040-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or
22192-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as
22344-491: The use of computer models, non-living tissues and cells, and replacement of “higher-order” animals (primates and mammals) with “lower” order animals (e.g. cold-blooded animals, invertebrates) wherever possible. "Reduction" refers to efforts to minimize number of animals used during the course of an experiment, as well as prevention of unnecessary replication of previous experiments. To satisfy this requirement, mathematical calculations of statistical power are employed to determine
22496-483: The vector of inheritance for genes. Drosophila became one of the first, and for some time the most widely used, model organisms, and Eric Kandel wrote that Morgan's discoveries "helped transform biology into an experimental science". D. melanogaster remains one of the most widely used eukaryotic model organisms. During the same time period, studies on mouse genetics in the laboratory of William Ernest Castle in collaboration with Abbie Lathrop led to generation of
22648-472: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won
22800-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced
22952-417: Was the bacterium Escherichia coli , a common constituent of the human digestive system. Several of the bacterial viruses ( bacteriophage ) that infect E. coli also have been very useful for the study of gene structure and gene regulation (e.g. phages Lambda and T4 ). However, it is debated whether bacteriophages should be classified as organisms, because they lack metabolism and depend on functions of
23104-569: Was the first plant to have its genome sequenced . Among vertebrates , guinea pigs ( Cavia porcellus ) were used by Robert Koch and other early bacteriologists as a host for bacterial infections, becoming a byword for "laboratory animal", but are less commonly used today. The classic model vertebrate is currently the mouse ( Mus musculus ). Many inbred strains exist, as well as lines selected for particular traits, often of medical interest, e.g. body size, obesity, muscularity, and voluntary wheel-running behavior. The rat ( Rattus norvegicus )
#67932