Misplaced Pages

Malyshev Factory

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Malyshev Factory ( Ukrainian : Завод імені В.О. Малишева , romanized :  Zavod imeni V.O. Malysheva ; abbreviated ЗІМ , ZIM ), formerly the Kharkov Locomotive Factory (Russian: Харьковский паровозостроительный завод , romanized:  Khar'kovskiy parovozostroitel'nyy zavod , ХПЗ , KhPZ ), is a state-owned manufacturer of heavy equipment in Kharkiv , Ukraine . It was named after the Soviet politician Vyacheslav Malyshev . The factory is part of the state concern, Ukroboronprom .

#490509

131-762: It produces diesel engines , farm machinery , coal mining , sugar refining , and wind farm equipment, but is best known for its production of Soviet tanks , including the BT tank series of fast tanks, the famous T-34 of the Second World War, the Cold War T-64 and T-80 , and their modern Ukrainian successor, the T-84 . The factory is closely associated with the Morozov Design Bureau (KMDB), designer of military armoured fighting vehicles and

262-414: A carcinogen or "probable carcinogen" and is known to increase the risk of heart and respiratory diseases. In principle, a diesel engine does not require any sort of electrical system. However, most modern diesel engines are equipped with an electrical fuel pump, and an electronic engine control unit. However, there is no high-voltage electrical ignition system present in a diesel engine. This eliminates

393-445: A gas engine (using a gaseous fuel like natural gas or liquefied petroleum gas ). Diesel engines work by compressing only air, or air combined with residual combustion gases from the exhaust (known as exhaust gas recirculation , "EGR"). Air is inducted into the chamber during the intake stroke, and compressed during the compression stroke. This increases air temperature inside the cylinder so that atomised diesel fuel injected into

524-415: A turbojet , driving the fan of a turbofan , rotor or accessory of a turboshaft , and gear reduction and propeller of a turboprop . If the engine has a power turbine added to drive an industrial generator or a helicopter rotor, the exit pressure will be as close to the entry pressure as possible with only enough energy left to overcome the pressure losses in the exhaust ducting and expel the exhaust. For

655-409: A turboprop engine there will be a particular balance between propeller power and jet thrust which gives the most economical operation. In a turbojet engine only enough pressure and energy is extracted from the flow to drive the compressor and other components. The remaining high-pressure gases are accelerated through a nozzle to provide a jet to propel an aircraft. The smaller the engine, the higher

786-420: A turbopump to permit the use of lightweight, low-pressure tanks, reducing the empty weight of the rocket. A turboprop engine is a turbine engine that drives an aircraft propeller using a reduction gear to translate high turbine section operating speed (often in the 10s of thousands) into low thousands necessary for efficient propeller operation. The benefit of using the turboprop engine is to take advantage of

917-452: A turboshaft design. They supply: Industrial gas turbines differ from aeronautical designs in that the frames, bearings, and blading are of heavier construction. They are also much more closely integrated with the devices they power—often an electric generator —and the secondary-energy equipment that is used to recover residual energy (largely heat). They range in size from portable mobile plants to large, complex systems weighing more than

1048-413: A buildup on the outside of the blades. Nickel-based superalloys boast improved strength and creep resistance due to their composition and resultant microstructure . The gamma (γ) FCC nickel is alloyed with aluminum and titanium in order to precipitate a uniform dispersion of the coherent Ni 3 (Al,Ti) gamma-prime (γ') phases. The finely dispersed γ' precipitates impede dislocation motion and introduce

1179-461: A centrifugal or axial compressor ). Heat is added in the combustion chamber and the specific volume of the gas increases, accompanied by a slight loss in pressure. During expansion through the stator and rotor passages in the turbine, irreversible energy transformation once again occurs. Fresh air is taken in, in place of the heat rejection. Air is taken in by a compressor, called a gas generator , with either an axial or centrifugal design, or

1310-421: A combination of the two. This air is then ducted into the combustor section which can be of a annular , can , or can-annular design. In the combustor section, roughly 70% of the air from the compressor is ducted around the combustor itself for cooling purposes. The remaining roughly 30% the air is mixed with fuel and ignited by the already burning air-fuel mixture , which then expands producing power across

1441-452: A diesel engine drops at lower loads, however, it does not drop quite as fast as the Otto (spark ignition) engine's. Diesel engines are combustion engines and, therefore, emit combustion products in their exhaust gas . Due to incomplete combustion, diesel engine exhaust gases include carbon monoxide , hydrocarbons , particulate matter , and nitrogen oxides pollutants. About 90 per cent of

SECTION 10

#1732797600491

1572-437: A diesel engine, particularly at idling speeds, is sometimes called "diesel clatter". This noise is largely caused by the sudden ignition of the diesel fuel when injected into the combustion chamber, which causes a pressure wave that sounds like knocking. Gas turbine A gas turbine or gas turbine engine is a type of continuous flow internal combustion engine . The main parts common to all gas turbine engines form

1703-516: A few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high-speed engines the plunger pumps are together in one unit. The length of fuel lines from the pump to each injector is normally the same for each cylinder in order to obtain the same pressure delay. Direct injected diesel engines usually use orifice-type fuel injectors. Electronic control of

1834-517: A few dozen hours per year—depending on the electricity demand and the generating capacity of the region. In areas with a shortage of base-load and load following power plant capacity or with low fuel costs, a gas turbine powerplant may regularly operate most hours of the day. A large single-cycle gas turbine typically produces 100 to 400 megawatts of electric power and has 35–40% thermodynamic efficiency . Industrial gas turbines that are used solely for mechanical drive or used in collaboration with

1965-407: A finite area, and the net output of work during a cycle is positive. The fuel efficiency of diesel engines is better than most other types of combustion engines, due to their high compression ratio, high air–fuel equivalence ratio (λ) , and the lack of intake air restrictions (i.e. throttle valves). Theoretically, the highest possible efficiency for a diesel engine is 75%. However, in practice

2096-452: A fuel consumption of 519 g·kW ·h . However, despite proving the concept, the engine caused problems, and Diesel could not achieve any substantial progress. Therefore, Krupp considered rescinding the contract they had made with Diesel. Diesel was forced to improve the design of his engine and rushed to construct a third prototype engine. Between 8 November and 20 December 1895, the second prototype had successfully covered over 111 hours on

2227-409: A full set of valves, two-stroke diesel engines have simple intake ports, and exhaust ports (or exhaust valves). When the piston approaches bottom dead centre, both the intake and the exhaust ports are "open", which means that there is atmospheric pressure inside the cylinder. Therefore, some sort of pump is required to blow the air into the cylinder and the combustion gasses into the exhaust. This process

2358-579: A gas turbine engine is its power to weight ratio. Since significant useful work can be generated by a relatively lightweight engine, gas turbines are perfectly suited for aircraft propulsion. Thrust bearings and journal bearings are a critical part of a design. They are hydrodynamic oil bearings or oil-cooled rolling-element bearings . Foil bearings are used in some small machines such as micro turbines and also have strong potential for use in small gas turbines/ auxiliary power units A major challenge facing turbine design, especially turbine blades ,

2489-804: A handful of multi-turreted T-35 tanks. Shortly before the German invasion of the Soviet Union the KhPZ started series production of the T-34 , the most-produced tank of World War II . Series production began in June 1940 in Kharkov, and later in the Stalingrad Tractor Plant and Krasnoye Sormovo Shipbuilding Plant. In 1941, due to German advances, the factory and design shops were evacuated to

2620-490: A hundred tonnes housed in purpose-built buildings. When the gas turbine is used solely for shaft power, its thermal efficiency is about 30%. However, it may be cheaper to buy electricity than to generate it. Therefore, many engines are used in CHP (Combined Heat and Power) configurations that can be small enough to be integrated into portable container configurations. Gas turbines can be particularly efficient when waste heat from

2751-418: A lesser extent, on cars, buses, and motorcycles. A key advantage of jets and turboprops for airplane propulsion – their superior performance at high altitude compared to piston engines, particularly naturally aspirated ones – is irrelevant in most automobile applications. Their power-to-weight advantage, though less critical than for aircraft, is still important. Gas turbines offer a high-powered engine in

SECTION 20

#1732797600491

2882-403: A low-pressure loop at the bottom of the diagram. At 1 it is assumed that the exhaust and induction strokes have been completed, and the cylinder is again filled with air. The piston-cylinder system absorbs energy between 1 and 2 – this is the work needed to compress the air in the cylinder, and is provided by mechanical kinetic energy stored in the flywheel of the engine. Work output is done by

3013-457: A move seen to be an election gift to Kharkiv Oblast . Malyshev joined as the leader of thirty-four companies to form an export consortium called Ukrainian Armored Vehicles . Malyshev has demonstrated main battle tanks to Turkey, Greece, and Malaysia, and has entered into a contract to supply engines for Chinese-made Al-Khalid tanks for Pakistan. In September 2000, a deal was signed to modernize Soviet-made tanks and armoured personnel carries for

3144-681: A notable exception being the EMD 567 , 645 , and 710 engines, which are all two-stroke. The power output of medium-speed diesel engines can be as high as 21,870 kW, with the effective efficiency being around 47-48% (1982). Most larger medium-speed engines are started with compressed air direct on pistons, using an air distributor, as opposed to a pneumatic starting motor acting on the flywheel, which tends to be used for smaller engines. Medium-speed engines intended for marine applications are usually used to power ( ro-ro ) ferries, passenger ships or small freight ships. Using medium-speed engines reduces

3275-423: A peak power of almost 100 MW each. Diesel engines may be designed with either two-stroke or four-stroke combustion cycles . They were originally used as a more efficient replacement for stationary steam engines . Since the 1910s, they have been used in submarines and ships. Use in locomotives , buses, trucks, heavy equipment , agricultural equipment and electricity generation plants followed later. In

3406-535: A petroleum engine with glow-tube ignition in the early 1890s; he claimed against his own better judgement that his glow-tube ignition engine worked the same way Diesel's engine did. His claims were unfounded and he lost a patent lawsuit against Diesel. Other engines, such as the Akroyd engine and the Brayton engine , also use an operating cycle that is different from the diesel engine cycle. Friedrich Sass says that

3537-415: A poorer power-to-mass ratio than an equivalent petrol engine. The lower engine speeds (RPM) of typical diesel engines results in a lower power output. Also, the mass of a diesel engine is typically higher, since the higher operating pressure inside the combustion chamber increases the internal forces, which requires stronger (and therefore heavier) parts to withstand these forces. The distinctive noise of

3668-532: A recovery steam generator differ from power generating sets in that they are often smaller and feature a dual shaft design as opposed to a single shaft. The power range varies from 1 megawatt up to 50 megawatts. These engines are connected directly or via a gearbox to either a pump or compressor assembly. The majority of installations are used within the oil and gas industries. Mechanical drive applications increase efficiency by around 2%. Oil and gas platforms require these engines to drive compressors to inject gas into

3799-408: A regular trunk-piston. Two-stroke engines have a limited rotational frequency and their charge exchange is more difficult, which means that they are usually bigger than four-stroke engines and used to directly power a ship's propeller. Four-stroke engines on ships are usually used to power an electric generator. An electric motor powers the propeller. Both types are usually very undersquare , meaning

3930-435: A simple mechanical injection system since exact injection timing is not as critical. Most modern automotive engines are DI which have the benefits of greater efficiency and easier starting; however, IDI engines can still be found in the many ATV and small diesel applications. Indirect injected diesel engines use pintle-type fuel injectors. Early diesel engines injected fuel with the assistance of compressed air, which atomised

4061-536: A single orifice injector. The pre-chamber has the disadvantage of lowering efficiency due to increased heat loss to the engine's cooling system, restricting the combustion burn, thus reducing the efficiency by 5–10%. IDI engines are also more difficult to start and usually require the use of glow plugs. IDI engines may be cheaper to build but generally require a higher compression ratio than the DI counterpart. IDI also makes it easier to produce smooth, quieter running engines with

Malyshev Factory - Misplaced Pages Continue

4192-527: A single speed for long periods. Two-stroke engines use a combustion cycle which is completed in two strokes instead of four strokes. Filling the cylinder with air and compressing it takes place in one stroke, and the power and exhaust strokes are combined. The compression in a two-stroke diesel engine is similar to the compression that takes place in a four-stroke diesel engine: As the piston passes through bottom centre and starts upward, compression commences, culminating in fuel injection and ignition. Instead of

4323-426: A small chamber called a swirl chamber, precombustion chamber, pre chamber or ante-chamber, which is connected to the cylinder by a narrow air passage. Generally the goal of the pre chamber is to create increased turbulence for better air / fuel mixing. This system also allows for a smoother, quieter running engine, and because fuel mixing is assisted by turbulence, injector pressures can be lower. Most IDI systems use

4454-530: A source of radio frequency emissions (which can interfere with navigation and communication equipment), which is why only diesel-powered vehicles are allowed in some parts of the American National Radio Quiet Zone . To control the torque output at any given time (i.e. when the driver of a car adjusts the accelerator pedal ), a governor adjusts the amount of fuel injected into the engine. Mechanical governors have been used in

4585-400: A spark plug ( compression ignition rather than spark ignition ). In the diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 23:1. This high compression causes the temperature of the air to rise. At about the top of the compression stroke, fuel is injected directly into the compressed air in

4716-417: A swirl chamber or pre-chamber are called indirect injection (IDI) engines. Most direct injection diesel engines have a combustion cup in the top of the piston where the fuel is sprayed. Many different methods of injection can be used. Usually, an engine with helix-controlled mechanic direct injection has either an inline or a distributor injection pump. For each engine cylinder, the corresponding plunger in

4847-569: A threshold stress, increasing the stress required for the onset of creep. Furthermore, γ' is an ordered L1 2 phase that makes it harder for dislocations to shear past it. Further Refractory elements such as rhenium and ruthenium can be added in solid solution to improve creep strength. The addition of these elements reduces the diffusion of the gamma prime phase, thus preserving the fatigue resistance, strength, and creep resistance. The development of single crystal superalloys has led to significant improvements in creep resistance as well. Due to

4978-422: A two-stroke ship diesel engine has a single-stage turbocharger with a turbine that has an axial inflow and a radial outflow. In general, there are three types of scavenging possible: Crossflow scavenging is incomplete and limits the stroke, yet some manufacturers used it. Reverse flow scavenging is a very simple way of scavenging, and it was popular amongst manufacturers until the early 1980s. Uniflow scavenging

5109-550: A very small and light package. However, they are not as responsive and efficient as small piston engines over the wide range of RPMs and powers needed in vehicle applications. In series hybrid vehicles, as the driving electric motors are mechanically detached from the electricity generating engine, the responsiveness, poor performance at low speed and low efficiency at low output problems are much less important. The turbine can be run at optimum speed for its power output, and batteries and ultracapacitors can supply power as needed, with

5240-423: Is a simplified and idealised representation of the events involved in a diesel engine cycle, arranged to illustrate the similarity with a Carnot cycle . Starting at 1, the piston is at bottom dead centre and both valves are closed at the start of the compression stroke; the cylinder contains air at atmospheric pressure. Between 1 and 2 the air is compressed adiabatically – that is without heat transfer to or from

5371-447: Is added to drive a propeller ( turboprop ) or ducted fan ( turbofan ) to reduce fuel consumption (by increasing propulsive efficiency) at subsonic flight speeds. An extra turbine is also required to drive a helicopter rotor or land-vehicle transmission ( turboshaft ), marine propeller or electrical generator (power turbine). Greater thrust-to-weight ratio for flight is achieved with the addition of an afterburner . The basic operation of

Malyshev Factory - Misplaced Pages Continue

5502-403: Is approximately 5 MW. Medium-speed engines are used in large electrical generators, railway diesel locomotives , ship propulsion and mechanical drive applications such as large compressors or pumps. Medium speed diesel engines operate on either diesel fuel or heavy fuel oil by direct injection in the same manner as low-speed engines. Usually, they are four-stroke engines with trunk pistons;

5633-429: Is called scavenging . The pressure required is approximately 10-30 kPa. Due to the lack of discrete exhaust and intake strokes, all two-stroke diesel engines use a scavenge blower or some form of compressor to charge the cylinders with air and assist in scavenging. Roots-type superchargers were used for ship engines until the mid-1950s, however since 1955 they have been widely replaced by turbochargers. Usually,

5764-404: Is done on the system to which the engine is connected. During this expansion phase the volume of the gas rises, and its temperature and pressure both fall. At 4 the exhaust valve opens, and the pressure falls abruptly to atmospheric (approximately). This is unresisted expansion and no useful work is done by it. Ideally the adiabatic expansion should continue, extending the line 3–4 to the right until

5895-464: Is more complicated to make but allows the highest fuel efficiency; since the early 1980s, manufacturers such as MAN and Sulzer have switched to this system. It is standard for modern marine two-stroke diesel engines. So-called dual-fuel diesel engines or gas diesel engines burn two different types of fuel simultaneously , for instance, a gaseous fuel and diesel engine fuel. The diesel engine fuel auto-ignites due to compression ignition, and then ignites

6026-677: Is reducing the creep that is induced by the high temperatures and stresses that are experienced during operation. Higher operating temperatures are continuously sought in order to increase efficiency, but come at the cost of higher creep rates. Several methods have therefore been employed in an attempt to achieve optimal performance while limiting creep, with the most successful ones being high performance coatings and single crystal superalloys . These technologies work by limiting deformation that occurs by mechanisms that can be broadly classified as dislocation glide, dislocation climb and diffusional flow. Protective coatings provide thermal insulation of

6157-475: Is used, it is possible to use exhaust air from the turbine as the primary combustion air. This effectively reduces global heat losses, although heat losses associated with the combustion exhaust remain inevitable. Closed-cycle gas turbines based on helium or supercritical carbon dioxide also hold promise for use with future high temperature solar and nuclear power generation. Gas turbines are often used on ships , locomotives , helicopters , tanks , and to

6288-461: Is usually high. The diesel engine has the highest thermal efficiency (see engine efficiency ) of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn, which enables heat dissipation by excess air. A small efficiency loss is also avoided compared with non-direct-injection gasoline engines, as unburned fuel is not present during valve overlap, and therefore no fuel goes directly from

6419-968: The Airbus A400M transport, Lockheed AC-130 and the 60-year-old Tupolev Tu-95 strategic bomber. While military turboprop engines can vary, in the civilian market there are two primary engines to be found: the Pratt & Whitney Canada PT6 , a free-turbine turboshaft engine, and the Honeywell TPE331 , a fixed turbine engine (formerly designated as the Garrett AiResearch 331). Aeroderivative gas turbines are generally based on existing aircraft gas turbine engines and are smaller and lighter than industrial gas turbines. Aeroderivatives are used in electrical power generation due to their ability to be shut down and handle load changes more quickly than industrial machines. They are also used in

6550-528: The BMW 801 . This, however, also translated into poor efficiency and reliability. More advanced gas turbines (such as those found in modern jet engines or combined cycle power plants) may have 2 or 3 shafts (spools), hundreds of compressor and turbine blades, movable stator blades, and extensive external tubing for fuel, oil and air systems; they use temperature resistant alloys, and are made with tight specifications requiring precision manufacture. All this often makes

6681-451: The Brayton cycle , also known as the "constant pressure cycle" . It is distinguished from the Otto cycle , in that all the processes (compression, ignition combustion, exhaust), occur at the same time, continuously. In a real gas turbine, mechanical energy is changed irreversibly (due to internal friction and turbulence) into pressure and thermal energy when the gas is compressed (in either

SECTION 50

#1732797600491

6812-707: The Ukrainian translation of the word zavod (works) . The Kharkov Locomotive Factory (KhPZ) built about 20% of the Russian Empire 's railway engines . After the Russian Revolution and the establishment of the Soviet government in Ukraine , the factory was put to work designing and building tractors and, after 1927, tanks . The Leningrad 's Bolshevik Factory and the Kharkov's KhPZ in 1929 became

6943-722: The United Kingdom , and the United States for "Method of and Apparatus for Converting Heat into Work". In 1894 and 1895, he filed patents and addenda in various countries for his engine; the first patents were issued in Spain (No. 16,654), France (No. 243,531) and Belgium (No. 113,139) in December 1894, and in Germany (No. 86,633) in 1895 and the United States (No. 608,845) in 1898. Diesel

7074-629: The Ural Mountains ; the plant was merged with Uralvagonzavod in Nizhny Tagil into one enterprise called Ural Tank Plant No. 183. After Soviet victory over the Germans, it began production of the new T-44 tank in 1945, and the first prototypes of the T-54 . After the war was over, the design bureau and factory gradually transferred all operations back to Kharkov. The "No. 183" designation

7205-434: The turbine . This expansion of the mixture then leaves the combustor section and has its velocity increased across the turbine section to strike the turbine blades, spinning the disc they are attached to, thus creating useful power. Of the power produced, 60-70% is solely used to power the gas generator. The remaining power is used to power what the engine is being used for, typically an aviation application, being thrust in

7336-572: The 1472 kW 2D100 (used in the TE3 locomotive) and the 2208 kW 10D100 (used in the TE10 locomotive). Both were 10 cylinder opposed piston two-stroke diesel engines of the 1950s. Another engine in this series, the 12 cylinder 9D100 was less successful and was not widely used. 49°58′11″N 36°16′51″E  /  49.96972°N 36.28083°E  / 49.96972; 36.28083 Diesel engine The diesel engine , named after

7467-542: The 1930s, they slowly began to be used in some automobiles . Since the 1970s energy crisis , demand for higher fuel efficiency has resulted in most major automakers, at some point, offering diesel-powered models, even in very small cars. According to Konrad Reif (2012), the EU average for diesel cars at the time accounted for half of newly registered cars. However, air pollution and overall emissions are more difficult to control in diesel engines compared to gasoline engines, and

7598-454: The Carnot cycle. Diesel was also introduced to a fire piston , a traditional fire starter using rapid adiabatic compression principles which Linde had acquired from Southeast Asia . After several years of working on his ideas, Diesel published them in 1893 in the essay Theory and Construction of a Rational Heat Motor . Diesel was heavily criticised for his essay, but only a few found

7729-412: The German engineer Rudolf Diesel , is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression ; thus, the diesel engine is called a compression-ignition engine (CI engine). This contrasts with engines using spark plug -ignition of the air-fuel mixture, such as a petrol engine ( gasoline engine) or

7860-808: The Kharkov Engine Design Bureau (KEDB) for engines. In 1958, it developed the Kharkovchanka , an off-road vehicle which reached the South Pole the following year. At its height during the Soviet era, the factory employed 60,000 of Kharkov's 1.5 million inhabitants. As of 2015, 5,000 people worked at the factory. The factory was renamed several times. First originally named in Russian , English-language sources variously refer to it as factory , plant , or works , though now use

7991-640: The Malyshev Factory specializing in engines and transmissions. The Malyshev factory's million-square-metre facility produced 800 tanks in 1991, but underwent difficult times after the breakup of the Soviet Union, producing only 46 tanks until 1996, when a $ 650 M contract was signed to supply 320 T-80 UD tanks to Pakistan . Fulfilling the contract was difficult — the distributed nature of Soviet military industry forced reliance on Russian factories for parts, and Russian political interference forced

SECTION 60

#1732797600491

8122-831: The Malyshev Factory had a sizable tank scrapping operation. Since the outbreak of the War in Donbass the factory's main focus became supplying new and rehabilitated tanks to the Ukrainian Army. On 22 July 2014 the factory was used as a transfer point in returning the bodies from the Malaysia Airlines Flight 17 crash to their home countries. The factory was struck by Russian missiles in March 2022, December 2022, and February 2023. Locomotive production

8253-625: The United Arab Emirates. The Malyshev factory also manufactures parts for Bizon , a Polish producer of agricultural combines. In April 2009, the Malyshev Factory signed a contract to upgrade 29 T-64B [Т-64Б] tanks to T-64BM "Bulat" [Т-64БМ "Булат"] standard, for the Ukrainian Army for ₴200 million ($ 25.1 million). Ten upgraded tanks were delivered in 2010, and 19 planned to be delivered in 2011. The T-64B tanks being upgraded were originally produced at Kharkov in 1980. In 2012

8384-456: The active species (typically vacancies) within the alloy and reducing dislocation and vacancy creep. It has been found that a coating of 1–200 μm can decrease blade temperatures by up to 200 °C (392 °F). Bond coats are directly applied onto the surface of the substrate using pack carburization and serve the dual purpose of providing improved adherence for the TBC and oxidation resistance for

8515-510: The addition of a ducted fan are called turbofans or (rarely) fan-jets. These engines produce nearly 80% of their thrust by the ducted fan, which can be seen from the front of the engine. They come in two types, low-bypass turbofan and high bypass , the difference being the amount of air moved by the fan, called "bypass air". These engines offer the benefit of more thrust without extra fuel consumption. Gas turbines are also used in many liquid-fuel rockets , where gas turbines are used to power

8646-400: The amount of fuel injected into the engine. Due to the amount of air being constant (for a given RPM) while the amount of fuel varies, very high ("lean") air-fuel ratios are used in situations where minimal torque output is required. This differs from a petrol engine, where a throttle is used to also reduce the amount of intake air as part of regulating the engine's torque output. Controlling

8777-401: The blade and offer oxidation and corrosion resistance. Thermal barrier coatings (TBCs) are often stabilized zirconium dioxide -based ceramics and oxidation/corrosion resistant coatings (bond coats) typically consist of aluminides or MCrAlY (where M is typically Fe and/or Cr) alloys. Using TBCs limits the temperature exposure of the superalloy substrate, thereby decreasing the diffusivity of

8908-470: The bore is smaller than the stroke. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) often have an effective efficiency of up to 55%. Like medium-speed engines, low-speed engines are started with compressed air, and they use heavy oil as their primary fuel. Four-stroke engines use the combustion cycle described earlier. Most smaller diesels, for vehicular use, for instance, typically use

9039-420: The closely related form of the turbocharger . The turbocharger is basically a compact and simple free shaft radial gas turbine which is driven by the piston engine's exhaust gas . The centripetal turbine wheel drives a centrifugal compressor wheel through a common rotating shaft. This wheel supercharges the engine air intake to a degree that can be controlled by means of a wastegate or by dynamically modifying

9170-412: The combustion chamber ignites. With the fuel being injected into the air just before combustion, the dispersion of fuel is uneven; this is called a heterogeneous air-fuel mixture. The torque a diesel engine produces is controlled by manipulating the air-fuel ratio (λ) ; instead of throttling the intake air, the diesel engine relies on altering the amount of fuel that is injected, and thus the air-fuel ratio

9301-448: The combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. Combustion occurs at a substantially constant pressure during the initial part of the power stroke. The start of vaporisation causes a delay before ignition and the characteristic diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above

9432-418: The combustion chamber. This may be into a (typically toroidal ) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporises fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in

9563-425: The compressed gas. Combustion and heating occur between 2 and 3. In this interval the pressure remains constant since the piston descends, and the volume increases; the temperature rises as a consequence of the energy of combustion. At 3 fuel injection and combustion are complete, and the cylinder contains gas at a higher temperature than at 2. Between 3 and 4 this hot gas expands, again approximately adiabatically. Work

9694-452: The compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent pre-ignition , which would cause engine damage. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre ( TDC ), premature detonation is not a problem and compression ratios are much higher. The pressure–volume diagram (pV) diagram

9825-473: The compression required for his cycle: By June 1893, Diesel had realised his original cycle would not work, and he adopted the constant pressure cycle. Diesel describes the cycle in his 1895 patent application. Notice that there is no longer a mention of compression temperatures exceeding the temperature of combustion. Now it is simply stated that the compression must be sufficient to trigger ignition. In 1892, Diesel received patents in Germany , Switzerland ,

9956-473: The compressor and the turbine with a compressed air store. In a conventional turbine, up to half the generated power is used driving the compressor. In a compressed air energy storage configuration, power is used to drive the compressor, and the compressed air is released to operate the turbine when required. Turboshaft engines are used to drive compressors in gas pumping stations and natural gas liquefaction plants. They are also used in aviation to power all but

10087-513: The compressor/shaft/turbine rotor assembly, with other moving parts in the fuel system. This, in turn, can translate into price. For instance, costing 10,000  ℛℳ for materials, the Jumo 004 proved cheaper than the Junkers 213 piston engine, which was 35,000  ℛℳ , and needed only 375 hours of lower-skill labor to complete (including manufacture, assembly, and shipping), compared to 1,400 for

10218-416: The concept of air-blast injection from George B. Brayton , albeit that Diesel substantially improved the system. On 17 February 1894, the redesigned engine ran for 88 revolutions – one minute; with this news, Maschinenfabrik Augsburg's stock rose by 30%, indicative of the tremendous anticipated demands for a more efficient engine. On 26 June 1895, the engine achieved an effective efficiency of 16.6% and had

10349-444: The construction of a simple gas turbine more complicated than a piston engine. Moreover, to reach optimum performance in modern gas turbine power plants the gas needs to be prepared to exact fuel specifications. Fuel gas conditioning systems treat the natural gas to reach the exact fuel specification prior to entering the turbine in terms of pressure, temperature, gas composition, and the related Wobbe index . The primary advantage of

10480-424: The cost of smaller ships and increases their transport capacity. In addition to that, a single ship can use two smaller engines instead of one big engine, which increases the ship's safety. Low-speed diesel engines are usually very large in size and mostly used to power ships . There are two different types of low-speed engines that are commonly used: Two-stroke engines with a crosshead, and four-stroke engines with

10611-520: The development of local capabilities, resulting in the T-84 tank design. Like many Ukrainian industries, Malyshev was not allowed to negotiate contracts directly with foreign governments, but had to rely on Ukrspetsexport , a government arms-trading company. Although Malyshev was denied exporter status in July 1999, it was given this status by decree of President Leonid Kuchma in November of that year,

10742-616: The diesel engine is Diesel's "very own work" and that any "Diesel myth" is " falsification of history ". Diesel sought out firms and factories that would build his engine. With the help of Moritz Schröter and Max Gutermuth  [ de ] , he succeeded in convincing both Krupp in Essen and the Maschinenfabrik Augsburg . Contracts were signed in April 1893, and in early summer 1893, Diesel's first prototype engine

10873-425: The early 2020s. In March 2018, GE Power achieved a 63.08% gross efficiency for its 7HA turbine. Aeroderivative gas turbines can also be used in combined cycles, leading to a higher efficiency, but it will not be as high as a specifically designed industrial gas turbine. They can also be run in a cogeneration configuration: the exhaust is used for space or water heating, or drives an absorption chiller for cooling

11004-417: The efficiency is much lower, with efficiencies of up to 43% for passenger car engines, up to 45% for large truck and bus engines, and up to 55% for large two-stroke marine engines. The average efficiency over a motor vehicle driving cycle is lower than the diesel engine's peak efficiency (for example, a 37% average efficiency for an engine with a peak efficiency of 44%). That is because the fuel efficiency of

11135-435: The engine cycled on and off to run it only at high efficiency. The emergence of the continuously variable transmission may also alleviate the responsiveness problem. Turbines have historically been more expensive to produce than piston engines, though this is partly because piston engines have been mass-produced in huge quantities for decades, while small gas turbine engines are rarities; however, turbines are mass-produced in

11266-533: The entire engine from raw materials, including the fabrication of a centrifugal compressor wheel from plywood, epoxy and wrapped carbon fibre strands. Several small companies now manufacture small turbines and parts for the amateur. Most turbojet-powered model aircraft are now using these commercial and semi-commercial microturbines, rather than a Schreckling-like home-build. Small gas turbines are used as auxiliary power units (APUs) to supply auxiliary power to larger, mobile, machines such as an aircraft , and are

11397-408: The environment – by the rising piston. (This is only approximately true since there will be some heat exchange with the cylinder walls .) During this compression, the volume is reduced, the pressure and temperature both rise. At or slightly before 2 (TDC) fuel is injected and burns in the compressed hot air. Chemical energy is released and this constitutes an injection of thermal energy (heat) into

11528-407: The exhaust gases, or from ducted fans connected to the gas turbines. Jet engines that produce thrust from the direct impulse of exhaust gases are often called turbojets . While still in service with many militaries and civilian operators, turbojets have mostly been phased out in favor of the turbofan engine due to the turbojet's low fuel efficiency, and high noise. Those that generate thrust with

11659-489: The first two Soviet tank factories to be modernized with German assistance under the Treaty of Rapallo, 1922 . A tank design bureau was established in the factory in 1928, one of several which would be responsible for some of the most successful tanks ever built, and eventually become the Morozov Design Bureau . The KhPZ designed and produced twenty-five T-24 tanks, then nearly eight thousand BT fast tanks . It also built

11790-463: The four-stroke cycle. This is due to several factors, such as the two-stroke design's narrow powerband which is not particularly suitable for automotive use and the necessity for complicated and expensive built-in lubrication systems and scavenging measures. The cost effectiveness (and proportion of added weight) of these technologies has less of an impact on larger, more expensive engines, while engines intended for shipping or stationary use can be run at

11921-616: The fuel and forced it into the engine through a nozzle (a similar principle to an aerosol spray). The nozzle opening was closed by a pin valve actuated by the camshaft . Although the engine was also required to drive an air compressor used for air-blast injection, the efficiency was nonetheless better than other combustion engines of the time. However the system was heavy and it was slow to react to changing torque demands, making it unsuitable for road vehicles. A unit injector system, also known as "Pumpe-Düse" ( pump-nozzle in German) combines

12052-700: The fuel injection transformed the direct injection engine by allowing much greater control over the combustion. Common rail (CR) direct injection systems do not have the fuel metering, pressure-raising and delivery functions in a single unit, as in the case of a Bosch distributor-type pump, for example. A high-pressure pump supplies the CR. The requirements of each cylinder injector are supplied from this common high pressure reservoir of fuel. An Electronic Diesel Control (EDC) controls both rail pressure and injections depending on engine operating conditions. The injectors of older CR systems have solenoid -driven plungers for lifting

12183-405: The fuel pump measures out the correct amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. Separate high-pressure fuel lines connect the fuel pump with each cylinder. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only

12314-408: The gas turbine is a Brayton cycle with air as the working fluid : atmospheric air flows through the compressor that brings it to higher pressure; energy is then added by spraying fuel into the air and igniting it so that the combustion generates a high-temperature flow; this high-temperature pressurized gas enters a turbine, producing a shaft work output in the process, used to drive the compressor;

12445-461: The gaseous fuel. Such engines do not require any type of spark ignition and operate similar to regular diesel engines. The fuel is injected at high pressure into either the combustion chamber , "swirl chamber" or "pre-chamber," unlike petrol engines where the fuel is often added in the inlet manifold or carburetor . Engines where the fuel is injected into the main combustion chamber are called direct injection (DI) engines, while those which use

12576-550: The hobby of engine collecting. In its most extreme form, amateurs have even rebuilt engines beyond professional repair and then used them to compete for the land speed record. The simplest form of self-constructed gas turbine employs an automotive turbocharger as the core component. A combustion chamber is fabricated and plumbed between the compressor and turbine sections. More sophisticated turbojets are also built, where their thrust and light weight are sufficient to power large model aircraft. The Schreckling design constructs

12707-419: The injection needle, whilst newer CR injectors use plungers driven by piezoelectric actuators that have less moving mass and therefore allow even more injections in a very short period of time. Early common rail system were controlled by mechanical means. The injection pressure of modern CR systems ranges from 140 MPa to 270 MPa. An indirect diesel injection system (IDI) engine delivers fuel into

12838-553: The injector and fuel pump into a single component, which is positioned above each cylinder. This eliminates the high-pressure fuel lines and achieves a more consistent injection. Under full load, the injection pressure can reach up to 220 MPa. Unit injectors are operated by a cam and the quantity of fuel injected is controlled either mechanically (by a rack or lever) or electronically. Due to increased performance requirements, unit injectors have been largely replaced by common rail injection systems. The average diesel engine has

12969-435: The inlet air and increase the power output, technology known as turbine inlet air cooling . Another significant advantage is their ability to be turned on and off within minutes, supplying power during peak, or unscheduled, demand. Since single cycle (gas turbine only) power plants are less efficient than combined cycle plants, they are usually used as peaking power plants , which operate anywhere from several hours per day to

13100-561: The intake/injection to the exhaust. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) can reach effective efficiencies of up to 55%. The combined cycle gas turbine (Brayton and Rankine cycle) is a combustion engine that is more efficient than a diesel engine, but due to its mass and dimensions, is unsuitable for many vehicles, including watercraft and some aircraft . The world's largest diesel engines put in service are 14-cylinder, two-stroke marine diesel engines; they produce

13231-617: The lack of grain boundaries, single crystals eliminate Coble creep and consequently deform by fewer modes – decreasing the creep rate. Although single crystals have lower creep at high temperatures, they have significantly lower yield stresses at room temperature where strength is determined by the Hall-Petch relationship. Care needs to be taken in order to optimize the design parameters to limit high temperature creep while not decreasing low temperature yield strength. Airbreathing jet engines are gas turbines optimized to produce thrust from

13362-550: The marine industry to reduce weight. Common types include the General Electric LM2500 , General Electric LM6000 , and aeroderivative versions of the Pratt & Whitney PW4000 , Pratt & Whitney FT4 and Rolls-Royce RB211 . Increasing numbers of gas turbines are being used or even constructed by amateurs. In its most straightforward form, these are commercial turbines acquired through military surplus or scrapyard sales, then operated for display as part of

13493-476: The mistake that he made; his rational heat motor was supposed to utilise a constant temperature cycle (with isothermal compression) that would require a much higher level of compression than that needed for compression ignition. Diesel's idea was to compress the air so tightly that the temperature of the air would exceed that of combustion. However, such an engine could never perform any usable work. In his 1892 US patent (granted in 1895) #542846, Diesel describes

13624-873: The most-produced tank ever. The bureau also designed OT-54 and TO-55 flame-thrower tanks, for production at the Omsk Transport Machine Construction Plant . In 1967, T-64 tank production began here, as well as in the Kirov Plant and in the Uralvagonzavod. The T-80 tank, with a high performance gas turbine engine was produced beginning in 1983, followed in 1985 by a more conventional diesel model, T-80UD. Finished tanks were assembled in several plants, but Soviet industrial planning prevented any region from being able to establish independent arms production. Components and sub-assemblies were produced in different factories,

13755-534: The past, however electronic governors are more common on modern engines. Mechanical governors are usually driven by the engine's accessory belt or a gear-drive system and use a combination of springs and weights to control fuel delivery relative to both load and speed. Electronically governed engines use an electronic control unit (ECU) or electronic control module (ECM) to control the fuel delivery. The ECM/ECU uses various sensors (such as engine speed signal, intake manifold pressure and fuel temperature) to determine

13886-467: The pioneer of modern Micro-Jets, Kurt Schreckling , produced one of the world's first Micro-Turbines, the FD3/67. This engine can produce up to 22 newtons of thrust, and can be built by most mechanically minded people with basic engineering tools, such as a metal lathe . Evolved from piston engine turbochargers , aircraft APUs or small jet engines , microturbines are 25 to 500 kilowatt turbines

14017-480: The piston (not shown on the P-V indicator diagram). When combustion is complete the combustion gases expand as the piston descends further; the high pressure in the cylinder drives the piston downward, supplying power to the crankshaft. As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing

14148-403: The piston-cylinder combination between 2 and 4. The difference between these two increments of work is the indicated work output per cycle, and is represented by the area enclosed by the pV loop. The adiabatic expansion is in a higher pressure range than that of the compression because the gas in the cylinder is hotter during expansion than during compression. It is for this reason that the loop has

14279-417: The pollutants can be removed from the exhaust gas using exhaust gas treatment technology. Road vehicle diesel engines have no sulfur dioxide emissions, because motor vehicle diesel fuel has been sulfur-free since 2003. Helmut Tschöke argues that particulate matter emitted from motor vehicles has negative impacts on human health. The particulate matter in diesel exhaust emissions is sometimes classified as

14410-431: The power-producing part (known as the gas generator or core) and are, in the direction of flow: Additional components have to be added to the gas generator to suit its application. Common to all is an air inlet but with different configurations to suit the requirements of marine use, land use or flight at speeds varying from stationary to supersonic. A propelling nozzle is added to produce thrust for flight. An extra turbine

14541-408: The pressure falls to that of the surrounding air, but the loss of efficiency caused by this unresisted expansion is justified by the practical difficulties involved in recovering it (the engine would have to be much larger). After the opening of the exhaust valve, the exhaust stroke follows, but this (and the following induction stroke) are not shown on the diagram. If shown, they would be represented by

14672-474: The purpose of using pulverized coal or finely ground biomass (such as sawdust) as a fuel. In the indirect system, a heat exchanger is used and only clean air with no combustion products travels through the power turbine. The thermal efficiency is lower in the indirect type of external combustion; however, the turbine blades are not subjected to combustion products and much lower quality (and therefore cheaper) fuels are able to be used. When external combustion

14803-670: The rotation rate of the shaft must be to attain the required blade tip speed. Blade-tip speed determines the maximum pressure ratios that can be obtained by the turbine and the compressor. This, in turn, limits the maximum power and efficiency that can be obtained by the engine. In order for tip speed to remain constant, if the diameter of a rotor is reduced by half, the rotational speed must double. For example, large jet engines operate around 10,000–25,000 rpm, while micro turbines spin as fast as 500,000 rpm. Mechanically, gas turbines can be considerably less complex than Reciprocating engines . Simple turbines might have one main moving part,

14934-573: The shaft work is achieved. The fourth step of the Brayton cycle (cooling of the working fluid) is omitted, as gas turbines are open systems that do not reuse the same air. Gas turbines are used to power aircraft, trains, ships, electrical generators, pumps, gas compressors, and tanks . In an ideal gas turbine, gases undergo four thermodynamic processes: an isentropic compression, an isobaric (constant pressure) combustion, an isentropic expansion and isobaric heat rejection. Together, these make up

15065-545: The size of a refrigerator . Microturbines have around 15% efficiencies without a recuperator , 20 to 30% with one and they can reach 85% combined thermal-electrical efficiency in cogeneration . Most gas turbines are internal combustion engines but it is also possible to manufacture an external combustion gas turbine which is, effectively, a turbine version of a hot air engine . Those systems are usually indicated as EFGT (Externally Fired Gas Turbine) or IFGT (Indirectly Fired Gas Turbine). External combustion has been used for

15196-503: The smallest modern helicopters, and function as an auxiliary power unit in large commercial aircraft. A primary shaft carries the compressor and its turbine which, together with a combustor, is called a Gas Generator . A separately spinning power-turbine is usually used to drive the rotor on helicopters. Allowing the gas generator and power turbine/rotor to spin at their own speeds allows more flexibility in their design. Also known as miniature gas turbines or micro-jets. With this in mind

15327-511: The substrate. The Al from the bond coats forms Al 2 O 3 on the TBC-bond coat interface which provides the oxidation resistance, but also results in the formation of an undesirable interdiffusion (ID) zone between itself and the substrate. The oxidation resistance outweighs the drawbacks associated with the ID zone as it increases the lifetime of the blade and limits the efficiency losses caused by

15458-544: The test bench. In the January 1896 report, this was considered a success. In February 1896, Diesel considered supercharging the third prototype. Imanuel Lauster , who was ordered to draw the third prototype " Motor 250/400 ", had finished the drawings by 30 April 1896. During summer that year the engine was built, it was completed on 6 October 1896. Tests were conducted until early 1897. First public tests began on 1 February 1897. Moritz Schröter 's test on 17 February 1897

15589-890: The timing of the start of injection of fuel into the cylinder is similar to controlling the ignition timing in a petrol engine. It is therefore a key factor in controlling the power output, fuel consumption and exhaust emissions. There are several different ways of categorising diesel engines, as outlined in the following sections. Günter Mau categorises diesel engines by their rotational speeds into three groups: High-speed engines are used to power trucks (lorries), buses , tractors , cars , yachts , compressors , pumps and small electrical generators . As of 2018, most high-speed engines have direct injection . Many modern engines, particularly in on-highway applications, have common rail direct injection . On bigger ships, high-speed diesel engines are often used for powering electric generators. The highest power output of high-speed diesel engines

15720-595: The turbine engines high power-to-weight ratio to drive a propeller, thus allowing a more powerful, but also smaller engine to be used. Turboprop engines are used on a wide range of business aircraft such as the Pilatus PC-12 , commuter aircraft such as the Beechcraft 1900 , and small cargo aircraft such as the Cessna 208 Caravan or De Havilland Canada Dash 8 , and large aircraft (typically military) such as

15851-463: The turbine housing's geometry (as in a variable geometry turbocharger ). It mainly serves as a power recovery device which converts a great deal of otherwise wasted thermal and kinetic energy into engine boost. Turbo-compound engines (actually employed on some semi-trailer trucks ) are fitted with blow down turbines which are similar in design and appearance to a turbocharger except for the turbine shaft being mechanically or hydraulically connected to

15982-480: The turbine is recovered by a heat recovery steam generator (HRSG) to power a conventional steam turbine in a combined cycle configuration. The 605 MW General Electric 9HA achieved a 62.22% efficiency rate with temperatures as high as 1,540 °C (2,800 °F). For 2018, GE offers its 826 MW HA at over 64% efficiency in combined cycle due to advances in additive manufacturing and combustion breakthroughs, up from 63.7% in 2017 orders and on track to achieve 65% by

16113-408: The unused energy comes out in the exhaust gases that can be repurposed for external work, such as directly producing thrust in a turbojet engine , or rotating a second, independent turbine (known as a power turbine ) that can be connected to a fan, propeller, or electrical generator. The purpose of the gas turbine determines the design so that the most desirable split of energy between the thrust and

16244-657: The use of diesel auto engines in the U.S. is now largely relegated to larger on-road and off-road vehicles . Though aviation has traditionally avoided using diesel engines, aircraft diesel engines have become increasingly available in the 21st century. Since the late 1990s, for various reasons—including the diesel's inherent advantages over gasoline engines, but also for recent issues peculiar to aviation—development and production of diesel engines for aircraft has surged, with over 5,000 such engines delivered worldwide between 2002 and 2018, particularly for light airplanes and unmanned aerial vehicles . In 1878, Rudolf Diesel , who

16375-498: The wells to force oil up via another bore, or to compress the gas for transportation. They are also often used to provide power for the platform. These platforms do not need to use the engine in collaboration with a CHP system due to getting the gas at an extremely reduced cost (often free from burn off gas). The same companies use pump sets to drive the fluids to land and across pipelines in various intervals. One modern development seeks to improve efficiency in another way, by separating

16506-532: Was a student at the "Polytechnikum" in Munich , attended the lectures of Carl von Linde . Linde explained that steam engines are capable of converting just 6–10% of the heat energy into work, but that the Carnot cycle allows conversion of much more of the heat energy into work by means of isothermal change in condition. According to Diesel, this ignited the idea of creating a highly efficient engine that could work on

16637-488: Was attacked and criticised over several years. Critics claimed that Diesel never invented a new motor and that the invention of the diesel engine is fraud. Otto Köhler and Emil Capitaine  [ de ] were two of the most prominent critics of Diesel's time. Köhler had published an essay in 1887, in which he describes an engine similar to the engine Diesel describes in his 1893 essay. Köhler figured that such an engine could not perform any work. Emil Capitaine had built

16768-477: Was built in Augsburg . On 10 August 1893, the first ignition took place, the fuel used was petrol. In winter 1893/1894, Diesel redesigned the existing engine, and by 18 January 1894, his mechanics had converted it into the second prototype. During January that year, an air-blast injection system was added to the engine's cylinder head and tested. Friedrich Sass argues that, it can be presumed that Diesel copied

16899-653: Was left in Nizhny Tagil, while in Kharkov the factory merged into Factory No. 75, a previously existing plant known for its T-34 diesel engines. T-54 production was started in the Urals and Kharkov in 1947–1948, and the move ended with the 1951 re-establishment of the Design Bureau, now called KB-60M, in Kharkov. In 1957, the Factory No. 75 was renamed Malyshev Plant, and next year it took up production of T-55 ,

17030-497: Was performed from 1897 to 1969. Until the invasion of Soviet Union by Germany in 1941, the factory was producing steam locomotives which were produced on several factories of the Russian Empire and the Soviet Union . After the war and rebuilding of the factory in 1947, it produced diesel locomotives until 1969. Specialized in tank building, the factory also was manufacturing artillery tractors, while initially as agricultural tractors. Notable diesel engines from Kharkov include

17161-424: Was the main test of Diesel's engine. The engine was rated 13.1 kW with a specific fuel consumption of 324 g·kW ·h , resulting in an effective efficiency of 26.2%. By 1898, Diesel had become a millionaire. The characteristics of a diesel engine are The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed hot air to ignite the fuel rather than using

#490509