Misplaced Pages

TOPEX/Poseidon

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

TOPEX/Poseidon was a joint satellite altimeter mission between NASA , the U.S. space agency; and CNES , the French space agency, to map ocean surface topography . Launched on August 10, 1992, it was the first major oceanographic research satellite. TOPEX/Poseidon helped revolutionize oceanography by providing data previously impossible to obtain. Oceanographer Walter Munk described TOPEX/Poseidon as "the most successful ocean experiment of all time." A malfunction ended normal satellite operations in January 2006.

#639360

120-469: Before TOPEX/Poseidon, scientists had only a brief glimpse of Earth's ocean as a whole from the pioneering but short-lived Seasat satellite. TOPEX/Poseidon's radar altimeter provided the first continuous global coverage of the surface topography of the oceans. From orbit 1,330 kilometers above Earth, TOPEX/Poseidon provided measurements of the surface height of 95 percent of the ice-free ocean to an accuracy of 3.3 centimeters. The satellite's measurements of

240-470: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,

360-410: A halocline . If a zone undergoes a strong, vertical chemistry gradient with depth, it contains a chemocline . Temperature and salinity control ocean water density. Colder and saltier water is denser, and this density plays a crucial role in regulating the global water circulation within the ocean. The halocline often coincides with the thermocline, and the combination produces a pronounced pycnocline ,

480-493: A mid-ocean ridge , which creates a long mountain range beneath the ocean. Together they form the global mid-oceanic ridge system that features the longest mountain range in the world. The longest continuous mountain range is 65,000 km (40,000 mi). This underwater mountain range is several times longer than the longest continental mountain range – the Andes . Oceanographers state that less than 20% of

600-408: A spacecraft . That measurement, coupled with orbital elements (possibly from GPS ), enables determination of the topography . The two lengths of radio waves permit the altimeter to automatically correct for varying delays in the ionosphere . Ocean The ocean is the body of salt water that covers approximately 70.8% of Earth . In English , the term ocean also refers to any of

720-404: A transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about

840-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes

960-477: A boundary between less dense surface water and dense deep water. Radar Radar is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of

1080-840: A common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of

1200-422: A depth of a few hundred meters or less. Human activity often has negative impacts on marine life within the continental shelf. Ocean temperatures depend on the amount of solar radiation reaching the ocean surface. In the tropics, surface temperatures can rise to over 30 °C (86 °F). Near the poles where sea ice forms, the temperature in equilibrium is about −2 °C (28 °F). In all parts of

1320-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to

SECTION 10

#1732772983640

1440-540: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during

1560-595: A gentle breeze on a pond causes ripples to form. A stronger gust blowing over the ocean causes larger waves as the moving air pushes against the raised ridges of water. The waves reach their maximum height when the rate at which they are travelling nearly matches the speed of the wind. In open water, when the wind blows continuously as happens in the Southern Hemisphere in the Roaring Forties , long, organized masses of water called swell roll across

1680-749: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer

1800-498: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,

1920-732: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and

2040-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct

2160-496: A shallow area and this, coupled with a low pressure system, can raise the surface of the ocean dramatically above a typical high tide. The average depth of the oceans is about 4 km. More precisely the average depth is 3,688 meters (12,100 ft). Nearly half of the world's marine waters are over 3,000 meters (9,800 ft) deep. "Deep ocean," which is anything below 200 meters (660 ft), covers about 66% of Earth's surface. This figure does not include seas not connected to

2280-677: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented

2400-403: A wave-cut platform develops at the foot of the cliff and this has a protective effect, reducing further wave-erosion. Material worn from the margins of the land eventually ends up in the sea. Here it is subject to attrition as currents flowing parallel to the coast scour out channels and transport sand and pebbles away from their place of origin. Sediment carried to the sea by rivers settles on

2520-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become

SECTION 20

#1732772983640

2640-907: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and

2760-406: A zone undergoes dramatic changes in temperature with depth, it contains a thermocline , a distinct boundary between warmer surface water and colder deep water. In tropical regions, the thermocline is typically deeper compared to higher latitudes. Unlike polar waters , where solar energy input is limited, temperature stratification is less pronounced, and a distinct thermocline is often absent. This

2880-439: Is a bay , a small bay with a narrow inlet is a cove and a large bay may be referred to as a gulf . Coastlines are influenced by several factors including the strength of the waves arriving on the shore, the gradient of the land margin, the composition and hardness of the coastal rock, the inclination of the off-shore slope and the changes of the level of the land due to local uplift or submergence. Normally, waves roll towards

3000-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects

3120-444: Is an important reference point for oceanography and geography, particularly as mean sea level . The ocean surface has globally little, but measurable topography , depending on the ocean's volumes. The ocean surface is a crucial interface for oceanic and atmospheric processes. Allowing interchange of particles, enriching the air and water, as well as grounds by some particles becoming sediments . This interchange has fertilized life in

3240-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only

3360-411: Is customarily divided into five principal oceans – listed below in descending order of area and volume: The ocean fills Earth's oceanic basins . Earth's oceanic basins cover different geologic provinces of Earth's oceanic crust as well as continental crust . As such it covers mainly Earth's structural basins , but also continental shelfs . In mid-ocean, magma is constantly being thrust through

3480-399: Is due to the fact that surface waters in polar latitudes are nearly as cold as deeper waters. Below the thermocline, water everywhere in the ocean is very cold, ranging from −1 °C to 3 °C. Because this deep and cold layer contains the bulk of ocean water, the average temperature of the world ocean is 3.9 °C. If a zone undergoes dramatic changes in salinity with depth, it contains

3600-567: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having

3720-456: Is irregular, unevenly dominating the Earth's surface . This leads to the distinction of the Earth's surface into a water and land hemisphere , as well as the division of the ocean into different oceans. Seawater covers about 361,000,000 km (139,000,000 sq mi) and the ocean's furthest pole of inaccessibility , known as " Point Nemo ", in a region known as spacecraft cemetery of

TOPEX/Poseidon - Misplaced Pages Continue

3840-454: Is produced and magma is forced up creating underwater mountains, some of which may form chains of volcanic islands near to deep trenches. Near some of the boundaries between the land and sea, the slightly denser oceanic plates slide beneath the continental plates and more subduction trenches are formed. As they grate together, the continental plates are deformed and buckle causing mountain building and seismic activity. Every ocean basin has

3960-407: Is pushed across the surface of the ocean by the wind, but this represents a transfer of energy and not horizontal movement of water. As waves approach land and move into shallow water , they change their behavior. If approaching at an angle, waves may bend ( refraction ) or wrap around rocks and headlands ( diffraction ). When the wave reaches a point where its deepest oscillations of the water contact

4080-423: Is reflected back out of the water. Red light is most easily absorbed and thus does not reach great depths, usually to less than 50 meters (164 ft). Blue light, in comparison, can penetrate up to 200 meters (656 ft). Second, water molecules and very tiny particles in ocean water preferentially scatter blue light more than light of other colors. Blue light scattering by water and tiny particles happens even in

4200-480: Is sometimes referred to as the World Ocean, global ocean or the great ocean . The concept of a continuous body of water with relatively unrestricted exchange between its components is critical in oceanography . The word ocean comes from the figure in classical antiquity , Oceanus ( / oʊ ˈ s iː ə n ə s / ; ‹See Tfd› Greek : Ὠκεανός Ōkeanós , pronounced [ɔːkeanós] ),

4320-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1

4440-691: The North Sea or the Red Sea . There is no sharp distinction between seas and oceans, though generally seas are smaller, and are often partly (as marginal seas ) or wholly (as inland seas ) bordered by land. The contemporary concept of the World Ocean was coined in the early 20th century by the Russian oceanographer Yuly Shokalsky to refer to the continuous ocean that covers and encircles most of Earth. The global, interconnected body of salt water

4560-628: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,

4680-717: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft

4800-481: The South Pacific Ocean , at 48°52.6′S 123°23.6′W  /  48.8767°S 123.3933°W  / -48.8767; -123.3933  ( Point Nemo ) . This point is roughly 2,688 km (1,670 mi) from the nearest land. There are different customs to subdivide the ocean and are adjourned by smaller bodies of water such as, seas , gulfs , bays , bights , and straits . The ocean

4920-592: The Thames Barrier is designed to protect London from a storm surge, while the failure of the dykes and levees around New Orleans during Hurricane Katrina created a humanitarian crisis in the United States. Most of the ocean is blue in color, but in some places the ocean is blue-green, green, or even yellow to brown. Blue ocean color is a result of several factors. First, water preferentially absorbs red light, which means that blue light remains and

TOPEX/Poseidon - Misplaced Pages Continue

5040-410: The carbon cycle , and the water cycle by acting as a huge heat reservoir . Ocean scientists split the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone is the open ocean's water column from the surface to the ocean floor. The water column is further divided into zones based on depth and the amount of light present. The photic zone starts at

5160-406: The coastline and structure of the world ocean. A global ocean has existed in one form or another on Earth for eons. Since its formation the ocean has taken many conditions and shapes with many past ocean divisions and potentially at times covering the whole globe. During colder climatic periods, more ice caps and glaciers form, and enough of the global water supply accumulates as ice to lessen

5280-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,

5400-591: The ocean floor , they begin to slow down. This pulls the crests closer together and increases the waves' height , which is called wave shoaling . When the ratio of the wave's height to the water depth increases above a certain limit, it " breaks ", toppling over in a mass of foaming water. This rushes in a sheet up the beach before retreating into the ocean under the influence of gravity. Earthquakes , volcanic eruptions or other major geological disturbances can set off waves that can lead to tsunamis in coastal areas which can be very dangerous. The ocean's surface

5520-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during

5640-534: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through

5760-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told

5880-442: The Earth's biosphere . Oceanic evaporation , as a phase of the water cycle, is the source of most rainfall (about 90%), causing a global cloud cover of 67% and a consistent oceanic cloud cover of 72%. Ocean temperatures affect climate and wind patterns that affect life on land. One of the most dramatic forms of weather occurs over the oceans: tropical cyclones (also called "typhoons" and "hurricanes" depending upon where

6000-405: The Moon are 20x stronger than the Moon's tidal forces on the Earth.) The primary effect of lunar tidal forces is to bulge Earth matter towards the near and far sides of the Earth, relative to the moon. The "perpendicular" sides, from which the Moon appears in line with the local horizon, experience "tidal troughs". Since it takes nearly 25 hours for the Earth to rotate under the Moon (accounting for

6120-403: The Moon's 28 day orbit around Earth), tides thus cycle over a course of 12.5 hours. However, the rocky continents pose obstacles for the tidal bulges, so the timing of tidal maxima may not actually align with the Moon in most localities on Earth, as the oceans are forced to "dodge" the continents. Timing and magnitude of tides vary widely across the Earth as a result of the continents. Thus, knowing

SECTION 50

#1732772983640

6240-422: The Moon's gravity, oceanic tides are also substantially modulated by the Sun's tidal forces, by the rotation of the Earth, and by the shape of the rocky continents blocking oceanic water flow. (Tidal forces vary more with distance than the "base" force of gravity: the Moon's tidal forces on Earth are more than double the Sun's, despite the latter's much stronger gravitational force on Earth. Earth's tidal forces upon

6360-400: The Moon's position does not allow a local to predict tide timings, instead requiring precomputed tide tables which account for the continents and the Sun, among others. During each tidal cycle, at any given place the tidal waters rise to maximum height, high tide, before ebbing away again to the minimum level, low tide. As the water recedes, it gradually reveals the foreshore , also known as

6480-648: The Okeanos is represented with a dragon-tail on some early Greek vases. Scientists believe that a sizable quantity of water would have been in the material that formed Earth. Water molecules would have escaped Earth's gravity more easily when it was less massive during its formation. This is called atmospheric escape . During planetary formation , Earth possibly had magma oceans . Subsequently, outgassing , volcanic activity and meteorite impacts , produced an early atmosphere of carbon dioxide , nitrogen and water vapor , according to current theories. The gases and

6600-724: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on

6720-741: The World Ocean, such as the Caspian Sea . The deepest region of the ocean is at the Mariana Trench , located in the Pacific Ocean near the Northern Mariana Islands . The maximum depth has been estimated to be 10,971 meters (35,994 ft). The British naval vessel Challenger II surveyed the trench in 1951 and named the deepest part of the trench the " Challenger Deep ". In 1960, the Trieste successfully reached

6840-520: The altimeters, the TOPEX Microwave Radiometer (TMR) operating at 18, 21, and 37 GHz was used to correct for atmospheric wet path delay. The satellite was also equipped with instruments to accurately pinpoint its location. Precise orbit determination is crucial because errors in locating the spacecraft would distort the sea level measurement calculated from the altimeter readings. Three independent tracking systems determined

6960-421: The amounts in other parts of the water cycle. The reverse is true during warm periods. During the last ice age, glaciers covered almost one-third of Earth's land mass with the result being that the oceans were about 122 m (400 ft) lower than today. During the last global "warm spell," about 125,000 years ago, the seas were about 5.5 m (18 ft) higher than they are now. About three million years ago

7080-497: The areas in which the data are used include: TOPEX/Poseidon's follow-on mission, Jason-1 , was launched in 2001 to continue the ongoing measurements of sea surface topography. The two satellites, TOPEX/Poseidon and Jason-1, flew in a tandem mission for three years providing twice the coverage of the sea surface and allowing scientists to study smaller features than could be seen by one satellite. The record of global sea surface height begun by TOPEX/Poseidon and Jason-1 continues into

7200-537: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as

7320-479: The atmosphere are thought to have accumulated over millions of years. After Earth's surface had significantly cooled, the water vapor over time would have condensed, forming Earth's first oceans. The early oceans might have been significantly hotter than today and appeared green due to high iron content. Geological evidence helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption)

SECTION 60

#1732772983640

7440-479: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as

7560-407: The bottom of the trench, manned by a crew of two men. Oceanographers classify the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone consists of the water column of the open ocean, and can be divided into further regions categorized by light abundance and by depth. The ocean zones can be grouped by light penetration into (from top to bottom):

7680-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of

7800-476: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during

7920-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar

8040-626: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for

8160-509: The elder of the Titans in classical Greek mythology . Oceanus was believed by the ancient Greeks and Romans to be the divine personification of an enormous river encircling the world. The concept of Ōkeanós has an Indo-European connection. Greek Ōkeanós has been compared to the Vedic epithet ā-śáyāna-, predicated of the dragon Vṛtra-, who captured the cows/rivers. Related to this notion,

8280-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate

8400-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared

8520-466: The firm GEMA  [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such

8640-602: The first time to compare computer models of ocean circulation with actual global observations and use the data to improve climate predictions. While a three-year prime mission was planned, TOPEX/Poseidon delivered more than 10 years of data from orbit. In those years, the mission: TOPEX/Poseidon was launched using an Ariane 42P expendable launch vehicle , along with Korea Institute of Technology's Kitsat-1 satellite and France's S80/T satellite . Lift-off from Kourou in French Guiana took place on 1992-08-10. At lift-off

8760-412: The formation of unusually high rogue waves . Most waves are less than 3 m (10 ft) high and it is not unusual for strong storms to double or triple that height. Rogue waves, however, have been documented at heights above 25 meters (82 ft). The top of a wave is known as the crest, the lowest point between waves is the trough and the distance between the crests is the wavelength. The wave

8880-540: The future with the Ocean Surface Topography Mission on the Jason-2 satellite, which launched in June 2008. The Jason-3 mission launched January 17, 2016. TOPEX/Poseidon flew two onboard altimeters sharing the same antenna , but only one altimeter was operated at any time, with TOPEX given preference (on average 9 in 10 cycles during the first 10 years of the mission). In addition to

9000-433: The hills and valleys of the sea surface led to a fundamentally new understanding of ocean circulation and its effect on climate. The mission's most important achievement was to determine the patterns of ocean circulation - how heat stored in the ocean moves from one place to another. Since the ocean holds most of the Earth's heat from the Sun, ocean circulation is a driving force of climate. TOPEX/Poseidon made it possible for

9120-421: The interface between water and air is called swell – a term used in sailing , surfing and navigation . These motions profoundly affect ships on the surface of the ocean and the well-being of people on those ships who might suffer from sea sickness . Wind blowing over the surface of a body of water forms waves that are perpendicular to the direction of the wind. The friction between air and water caused by

9240-482: The intertidal zone. The difference in height between the high tide and low tide is known as the tidal range or tidal amplitude. When the sun and moon are aligned (full moon or new moon), the combined effect results in the higher "spring tides", while the sun and moon misaligning (half moons) result in lesser tidal ranges. In the open ocean tidal ranges are less than 1 meter, but in coastal areas these tidal ranges increase to more than 10 meters in some areas. Some of

9360-412: The large bodies of water into which the world ocean is conventionally divided. The following names describe five different areas of the ocean: Pacific , Atlantic , Indian , Antarctic/Southern , and Arctic . The ocean contains 97% of Earth's water and is the primary component of Earth's hydrosphere and is thereby essential to life on Earth. The ocean influences climate and weather patterns,

9480-739: The largest tidal ranges in the world occur in the Bay of Fundy and Ungava Bay in Canada, reaching up to 16 meters. Other locations with record high tidal ranges include the Bristol Channel between England and Wales, Cook Inlet in Alaska, and the Río Gallegos in Argentina. Tides are not to be confused with storm surges , which can occur when high winds pile water up against the coast in

9600-471: The majority of Earth's surface. It includes the Pacific , Atlantic , Indian , Southern/Antarctic , and Arctic oceans. As a general term, "the ocean" and "the sea" are often interchangeable. Strictly speaking, a "sea" is a body of water (generally a division of the world ocean) partly or fully enclosed by land. The word "sea" can also be used for many specific, much smaller bodies of seawater, such as

9720-503: The mass of the satellite was 2,402 kilograms (5,296 lb). The mission was named after the ocean TOPography EXperiment and the Greek god of the ocean Poseidon . In October 2005 after more than 62,000 orbits, TOPEX/Poseidon stopped providing science data after a momentum wheel malfunctioned, and the satellite was turned off on January 18, 2006. TOPEX/Poseidon's data have been the subject of more than 2,100 research publications. Some of

9840-638: The objects' locations and speeds. Radar was developed secretly for military use by several countries in the period before and during World War II . A key development was the cavity magnetron in the United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym ,

9960-408: The ocean faces many environmental threats, such as marine pollution , overfishing , and the effects of climate change . Those effects include ocean warming , ocean acidification and sea level rise . The continental shelf and coastal waters are most affected by human activity. The terms "the ocean" or "the sea" used without specification refer to the interconnected body of salt water covering

10080-508: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following

10200-693: The ocean, deep ocean temperatures range between −2 °C (28 °F) and 5 °C (41 °F). Constant circulation of water in the ocean creates ocean currents . Those currents are caused by forces operating on the water, such as temperature and salinity differences, atmospheric circulation (wind), and the Coriolis effect . Tides create tidal currents, while wind and waves cause surface currents. The Gulf Stream , Kuroshio Current , Agulhas Current and Antarctic Circumpolar Current are all major ocean currents. Such currents transport massive amounts of water, gases, pollutants and heat to different parts of

10320-508: The ocean, on land and air. All these processes and components together make up ocean surface ecosystems . Tides are the regular rise and fall in water level experienced by oceans, primarily driven by the Moon 's gravitational tidal forces upon the Earth. Tidal forces affect all matter on Earth, but only fluids like the ocean demonstrate the effects on human timescales. (For example, tidal forces acting on rock may produce tidal locking between two planetary bodies.) Though primarily driven by

10440-469: The ocean. If the wind dies down, the wave formation is reduced, but already-formed waves continue to travel in their original direction until they meet land. The size of the waves depends on the fetch , the distance that the wind has blown over the water and the strength and duration of that wind. When waves meet others coming from different directions, interference between the two can produce broken, irregular seas. Constructive interference can lead to

10560-419: The oceans absorb CO 2 from the atmosphere , a higher concentration leads to ocean acidification (a drop in pH value ). The ocean provides many benefits to humans such as ecosystem services , access to seafood and other marine resources , and a means of transport . The ocean is known to be the habitat of over 230,000 species , but may hold considerably more – perhaps over two million species. Yet,

10680-425: The oceans could have been up to 50 m (165 ft) higher. The entire ocean, containing 97% of Earth's water, spans 70.8% of Earth 's surface, making it Earth's global ocean or world ocean . This makes Earth, along with its vibrant hydrosphere a "water world" or " ocean world ", particularly in Earth's early history when the ocean is thought to have possibly covered Earth completely. The ocean's shape

10800-434: The oceans have been mapped. The zone where land meets sea is known as the coast , and the part between the lowest spring tides and the upper limit reached by splashing waves is the shore . A beach is the accumulation of sand or shingle on the shore. A headland is a point of land jutting out into the sea and a larger promontory is known as a cape . The indentation of a coastline, especially between two headlands,

10920-537: The oceans may have always been on the Earth since the beginning of the planet's formation. In this model, atmospheric greenhouse gases kept the oceans from freezing when the newly forming Sun had only 70% of its current luminosity . The origin of Earth's oceans is unknown. Oceans are thought to have formed in the Hadean eon and may have been the cause for the emergence of life . Plate tectonics , post-glacial rebound , and sea level rise continually change

11040-531: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating

11160-451: The photic zone, the mesopelagic zone and the aphotic deep ocean zone: The pelagic part of the aphotic zone can be further divided into vertical regions according to depth and temperature: Distinct boundaries between ocean surface waters and deep waters can be drawn based on the properties of the water. These boundaries are called thermoclines (temperature), haloclines (salinity), chemoclines (chemistry), and pycnoclines (density). If

11280-610: The position of the spacecraft. The first, the NASA laser retroreflector array (LRA) reflected laser beams from a network of 10 to 15 ground-based laser ranging stations under clear skies. The second, for all-weather, global tracking, was provided by the CNES Doppler Orbitography and Radiopositioning Integrated by Satellite tracking system receiver ( DORIS ). This device uses microwave doppler techniques (changes in radio frequency corresponding to relative velocity) to track

11400-418: The power of a storm wave impacting on the foot of a cliff has a shattering effect as air in cracks and crevices is compressed and then expands rapidly with release of pressure. At the same time, sand and pebbles have an erosive effect as they are thrown against the rocks. This tends to undercut the cliff, and normal weathering processes such as the action of frost follows, causing further destruction. Gradually,

11520-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on

11640-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,

11760-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting

11880-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called

12000-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has

12120-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R

12240-455: The seabed between adjoining plates to form mid-oceanic ridges and here convection currents within the mantle tend to drive the two plates apart. Parallel to these ridges and nearer the coasts, one oceanic plate may slide beneath another oceanic plate in a process known as subduction . Deep trenches are formed here and the process is accompanied by friction as the plates grind together. The movement proceeds in jerks which cause earthquakes, heat

12360-407: The seabed causing deltas to form in estuaries. All these materials move back and forth under the influence of waves, tides and currents. Dredging removes material and deepens channels but may have unexpected effects elsewhere on the coastline. Governments make efforts to prevent flooding of the land by the building of breakwaters , seawalls , dykes and levees and other sea defences. For instance,

12480-401: The shore at the rate of six to eight per minute and these are known as constructive waves as they tend to move material up the beach and have little erosive effect. Storm waves arrive on shore in rapid succession and are known as destructive waves as the swash moves beach material seawards. Under their influence, the sand and shingle on the beach is ground together and abraded. Around high tide,

12600-399: The source of the food supply which sustains most of the ocean ecosystem . Ocean photosynthesis also produces half of the oxygen in the Earth's atmosphere. Light can only penetrate a few hundred more meters; the rest of the deeper ocean is cold and dark (these zones are called mesopelagic and aphotic zones). The continental shelf is where the ocean meets dry land. It is more shallow, with

12720-411: The spacecraft. DORIS consists of an on-board receiver and a global network of 40 to 50 ground-based transmitting stations. The third system used an on-board experimental Global Positioning System (GPS) demonstration receiver to precisely determine the satellite's position continuously by analyzing the signals received from the U.S. Air Force's GPS constellation of Earth-orbiting satellites. TOPEX/Poseidon

12840-412: The surface and is defined to be "the depth at which light intensity is only 1% of the surface value" (approximately 200 m in the open ocean). This is the zone where photosynthesis can occur. In this process plants and microscopic algae (free floating phytoplankton ) use light, water, carbon dioxide, and nutrients to produce organic matter. As a result, the photic zone is the most biodiverse and

12960-456: The system forms). As the world's ocean is the principal component of Earth's hydrosphere , it is integral to life on Earth, forms part of the carbon cycle and water cycle , and – as a huge heat reservoir – influences climate and weather patterns. The motions of the ocean surface, known as undulations or wind waves , are the partial and alternate rising and falling of the ocean surface. The series of mechanical waves that propagate along

13080-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When

13200-585: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt

13320-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection

13440-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between

13560-472: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as

13680-434: The very clearest ocean water, and is similar to blue light scattering in the sky . Ocean water represents the largest body of water within the global water cycle (oceans contain 97% of Earth's water ). Evaporation from the ocean moves water into the atmosphere to later rain back down onto land and the ocean. Oceans have a significant effect on the biosphere . The ocean as a whole is thought to cover approximately 90% of

13800-476: The world, and from the surface into the deep ocean. All this has impacts on the global climate system . Ocean water contains dissolved gases, including oxygen , carbon dioxide and nitrogen . An exchange of these gases occurs at the ocean's surface. The solubility of these gases depends on the temperature and salinity of the water. The carbon dioxide concentration in the atmosphere is rising due to CO 2 emissions , mainly from fossil fuel combustion. As

13920-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over

14040-775: Was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. In the Nuvvuagittuq Greenstone Belt , Quebec , Canada, rocks dated at 3.8 billion years old by one study and 4.28 billion years old by another show evidence of the presence of water at these ages. If oceans existed earlier than this, any geological evidence either has yet to be discovered, or has since been destroyed by geological processes like crustal recycling . However, in August 2020, researchers reported that sufficient water to fill

14160-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by

14280-506: Was the first mission to demonstrate that the Global Positioning System could be used to determine a spacecraft's exact location and track it in orbit. Knowing the satellite's precise position to within 2 centimeters (less than 1 inch) in altitude was a key component in making accurate ocean height measurements possible. A number of satellites (See links) use exotic dual-band radar altimeters to measure height from

14400-463: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for

#639360