In astronomy , stellar kinematics is the observational study or measurement of the kinematics or motions of stars through space.
116-517: The Hyades Stream (or Hyades moving group ) is a large collection of scattered stars that also share a similar trajectory with the Hyades Cluster . In 1869, Richard A. Proctor observed that numerous stars at large distances from the Hyades share a similar motion through space. In 1908, Lewis Boss reported almost 25 years of observations to support this premise, arguing for the existence of
232-489: A conjunction of Jupiter and Mars in 1106 or 1107 as evidence. The Persian astronomer Nasir al-Din al-Tusi (1201–1274) in his Tadhkira wrote: "The Milky Way, i.e. the Galaxy, is made up of a very large number of small, tightly clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. Because of this, it was likened to milk in color." Ibn Qayyim al-Jawziyya (1292–1350) proposed that
348-666: A radius of about 39.5 kpc (130,000 ly), over twice as much as was determined in earlier studies, suggesting that about 90% of the mass of the galaxy is dark matter . In September 2023, astronomers reported that the virial mass of the Milky Way Galaxy is only 2.06 10 solar masses , only a 10th of the mass of previous studies. The mass was determined from data of the Gaia spacecraft . The Milky Way contains between 100 and 400 billion stars and at least that many planets. An exact figure would depend on counting
464-619: A 2016 study. Such Earth-sized planets may be more numerous than gas giants, though harder to detect at great distances given their small size. Besides exoplanets, " exocomets ", comets beyond the Solar System, have also been detected and may be common in the Milky Way. More recently, in November 2020, over 300 million habitable exoplanets are estimated to exist in the Milky Way Galaxy. When compared to other more distant galaxies in
580-552: A close binary system as a result of the companion star undergoing a supernova explosion. Ejection velocities up to 770 km/s, as measured from the galactic rest frame, are possible for late-type B-stars. This mechanism can explain the origin of HVSs which are ejected from the galactic disk. Known HVSs are main-sequence stars with masses a few times that of the Sun. HVSs with smaller masses are also expected and G/K-dwarf HVS candidates have been found. Some HVSs may have originated from
696-459: A cloud compose gravitationally bound open clusters containing dozens to thousands of members with similar ages and compositions. These clusters dissociate with time. Groups of young stars that escape a cluster, or are no longer bound to each other, form stellar associations. As these stars age and disperse, their association is no longer readily apparent and they become moving groups of stars. Astronomers are able to determine if stars are members of
812-709: A co-moving group of stars that he called the Taurus Stream (now generally known as the Hyades Stream or, following Olin J. Eggen who assumed that it was a vestige of an initially more massive cluster which had partly evaporated, the Hyades Supercluster). Boss published a chart that traced the scattered stars' movements back to a common point of convergence. Eggen's argument that groups of this type are in fact cluster remnants has been debated. It has been noted that because such phenomena may also be
928-533: A dim un-resolved "milky" glowing band arching across the night sky. The term is a translation of the Classical Latin via lactea , in turn derived from the Hellenistic Greek γαλαξίας , short for γαλαξίας κύκλος ( galaxías kýklos ), meaning "milky circle". The Ancient Greek γαλαξίας ( galaxias ) – from root γαλακτ -, γάλα ("milk") + -ίας (forming adjectives) – is also
1044-481: A disrupted dwarf galaxy. When it made its closest approach to the center of the Milky Way, some of its stars broke free and were thrown into space, due to the slingshot-like effect of the boost. Some neutron stars are inferred to be traveling with similar speeds. This could be related to HVSs and the HVS ejection mechanism. Neutron stars are the remnants of supernova explosions, and their extreme speeds are very likely
1160-460: A great deal of detail at +6.1. This makes the Milky Way difficult to see from brightly lit urban or suburban areas, but very prominent when viewed from rural areas when the Moon is below the horizon. Maps of artificial night sky brightness show that more than one-third of Earth's population cannot see the Milky Way from their homes due to light pollution. As viewed from Earth, the visible region of
1276-624: A high-velocity star moving much faster than its nearby neighbors. Depending on the definition, a high- velocity star is a star moving faster than 65 km/s to 100 km/s relative to the average motion of the other stars in the star's neighborhood. The velocity is also sometimes defined as supersonic relative to the surrounding interstellar medium. The three types of high-velocity stars are: runaway stars, halo stars and hypervelocity stars. High-velocity stars were studied by Jan Oort, who used their kinematic data to predict that high-velocity stars have very little tangential velocity. A runaway star
SECTION 10
#17327908185341392-600: A kinematic group because they share the same age, metallicity , and kinematics ( radial velocity and proper motion ). As the stars in a moving group formed in proximity and at nearly the same time from the same gas cloud, although later disrupted by tidal forces, they share similar characteristics. A stellar association is a very loose star cluster , whose stars share a common origin and are still moving together through space, but have become gravitationally unbound. Associations are primarily identified by their common movement vectors and ages. Identification by chemical composition
1508-537: A massive star that was originally ejected due to gravitational interactions with its stellar neighbors may itself go supernova, producing a remnant with a velocity modulated by the supernova kick. If this supernova occurs in the very nearby vicinity of other stars, it is possible that it may produce more runaways in the process. An example of a related set of runaway stars is the case of AE Aurigae , 53 Arietis and Mu Columbae , all of which are moving away from each other at velocities of over 100 km/s (for comparison,
1624-474: A measurement of the radial velocity of halo stars found that the mass enclosed within 80 kilo parsecs is 7 × 10 M ☉ . In a 2014 study, the mass of the entire Milky Way is estimated to be 8.5 × 10 M ☉ , but this is only half the mass of the Andromeda Galaxy. A recent 2019 mass estimate for the Milky Way is 1.29 × 10 M ☉ . Much of the mass of
1740-458: A name suggested by Sidney van den Bergh after he discovered that the stars in these nebulae had a non-uniform distribution. These young stellar groupings contain main sequence stars that are not sufficiently massive to disperse the interstellar clouds in which they formed. This allows the properties of the surrounding dark cloud to be examined by astronomers. Because R associations are more plentiful than OB associations, they can be used to trace out
1856-466: A number of infant T Tauri stars that are still in the process of entering the main sequence . These sparse populations of up to a thousand T Tauri stars are known as T associations . The nearest example is the Taurus-Auriga T association (Tau–Aur T association), located at a distance of 140 parsecs from the Sun. Other examples of T associations include the R Corona Australis T association ,
1972-410: A range in mass, as large as 4.5 × 10 M ☉ and as small as 8 × 10 M ☉ . By comparison, the total mass of all the stars in the Milky Way is estimated to be between 4.6 × 10 M ☉ and 6.43 × 10 M ☉ . In addition to the stars, there is also interstellar gas, comprising 90% hydrogen and 10% helium by mass, with two thirds of
2088-415: A treatise in 1755, Immanuel Kant , drawing on earlier work by Thomas Wright , speculated (correctly) that the Milky Way might be a rotating body of a huge number of stars, held together by gravitational forces akin to the Solar System but on much larger scales. The resulting disk of stars would be seen as a band on the sky from our perspective inside the disk. Wright and Kant also conjectured that some of
2204-428: Is a disk of gas and dust called the interstellar medium . This disk has at least a comparable extent in radius to the stars, whereas the thickness of the gas layer ranges from hundreds of light-years for the colder gas to thousands of light-years for warmer gas. The disk of stars in the Milky Way does not have a sharp edge beyond which there are no stars. Rather, the concentration of stars decreases with distance from
2320-566: Is a minuscule fraction (~0.000001%). Results from the second data release of Gaia (DR2) show that most high-velocity late-type stars have a high probability of being bound to the Milky Way. However, distant hypervelocity star candidates are more promising. In March 2019, LAMOST-HVS1 was reported to be a confirmed hypervelocity star ejected from the stellar disk of the Milky Way. In July 2019, astronomers reported finding an A-type star, S5-HVS1 , traveling 1,755 km/s (3,930,000 mph), faster than any other star detected so far. The star
2436-405: Is a ring-like filament of stars called Triangulum–Andromeda Ring (TriAnd Ring) rippling above and below the relatively flat galactic plane , which alongside Monoceros Ring were both suggested to be primarily the result of disk oscillations and wrapping around the Milky Way, at a diameter of at least 50 kpc (160,000 ly), which may be part of the Milky Way's outer disk itself, hence making
SECTION 20
#17327908185342552-513: Is also used to factor in association memberships. Stellar associations were first discovered by the Armenian astronomer Viktor Ambartsumian in 1947. The conventional name for an association uses the names or abbreviations of the constellation (or constellations) in which they are located; the association type, and, sometimes, a numerical identifier. Viktor Ambartsumian first categorized stellar associations into two groups, OB and T, based on
2668-599: Is an intense radio source known as Sagittarius A* , a supermassive black hole of 4.100 (± 0.034) million solar masses . The oldest stars in the Milky Way are nearly as old as the Universe itself and thus probably formed shortly after the Dark Ages of the Big Bang . Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that
2784-548: Is approximately 890 billion to 1.54 trillion times the mass of the Sun in total (8.9 × 10 to 1.54 × 10 solar masses), although stars and planets make up only a small part of this. Estimates of the mass of the Milky Way vary, depending upon the method and data used. The low end of the estimate range is 5.8 × 10 solar masses ( M ☉ ), somewhat less than that of the Andromeda Galaxy . Measurements using
2900-510: Is blown away, the remaining stars become unbound and begin to drift apart. It is believed that the majority of all stars in the Milky Way were formed in OB associations. O-class stars are short-lived, and will expire as supernovae after roughly one million years. As a result, OB associations are generally only a few million years in age or less. The O-B stars in the association will have burned all their fuel within ten million years. (Compare this to
3016-453: Is called the Zone of Avoidance . The Milky Way has a relatively low surface brightness . Its visibility can be greatly reduced by background light, such as light pollution or moonlight. The sky needs to be darker than about 20.2 magnitude per square arcsecond in order for the Milky Way to be visible. It should be visible if the limiting magnitude is approximately +5.1 or better and shows
3132-530: Is celestial. This idea would be influential later in the Muslim world . The Persian astronomer Al-Biruni (973–1048) proposed that the Milky Way is "a collection of countless fragments of the nature of nebulous stars". The Andalusian astronomer Avempace ( d 1138) proposed that the Milky Way was made up of many stars but appeared to be a continuous image in the Earth's atmosphere, citing his observation of
3248-541: Is estimated to contain 100–400 billion stars and at least that number of planets . The Solar System is located at a radius of about 27,000 light-years (8.3 kpc) from the Galactic Center , on the inner edge of the Orion Arm , one of the spiral-shaped concentrations of gas and dust. The stars in the innermost 10,000 light-years form a bulge and one or more bars that radiate from the bulge. The Galactic Center
3364-459: Is in the Grus (or Crane) constellation in the southern sky and is about 29,000 ly (1.8 × 10 AU) from Earth. It may have been ejected from the Milky Way after interacting with Sagittarius A* , the supermassive black hole at the center of the galaxy. HVSs are believed to predominantly originate by close encounters of binary stars with the supermassive black hole in the center of
3480-472: Is inclined by about 60° to the ecliptic (the plane of Earth's orbit ). Relative to the celestial equator , it passes as far north as the constellation of Cassiopeia and as far south as the constellation of Crux , indicating the high inclination of Earth's equatorial plane and the plane of the ecliptic, relative to the galactic plane. The north galactic pole is situated at right ascension 12 49 , declination +27.4° ( B1950 ) near β Comae Berenices , and
3596-414: Is one that is moving through space with an abnormally high velocity relative to the surrounding interstellar medium . The proper motion of a runaway star often points exactly away from a stellar association , of which the star was formerly a member, before it was hurled out. Mechanisms that may give rise to a runaway star include: Multiple mechanisms may accelerate the same runaway star. For example,
Hyades Stream - Misplaced Pages Continue
3712-553: Is related to but distinct from the subject of stellar dynamics , which involves the theoretical study or modeling of the motions of stars under the influence of gravity . Stellar-dynamical models of systems such as galaxies or star clusters are often compared with or tested against stellar-kinematic data to study their evolutionary history and mass distributions, and to detect the presence of dark matter or supermassive black holes through their gravitational influence on stellar orbits. The component of stellar motion toward or away from
3828-434: Is significantly smaller than the Andromeda Galaxy's isophotal diameter, and slightly below the mean isophotal sizes of the galaxies being at 28.3 kpc (92,000 ly). The paper concludes that the Milky Way and Andromeda Galaxy were not overly large spiral galaxies, nor were among the largest known (if the former not being the largest) as previously widely believed, but rather average ordinary spiral galaxies. To compare
3944-664: Is the Large Sagittarius Star Cloud , a portion of the central bulge of the galaxy. Dark regions within the band, such as the Great Rift and the Coalsack , are areas where interstellar dust blocks light from distant stars. Peoples of the southern hemisphere, including the Inca and Australian aborigines , identified these regions as dark cloud constellations . The area of sky that the Milky Way obscures
4060-510: Is the galaxy that includes the Solar System , with the name describing the galaxy's appearance from Earth : a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye . The Milky Way is a barred spiral galaxy with a D 25 isophotal diameter estimated at 26.8 ± 1.1 kiloparsecs (87,400 ± 3,600 light-years ), but only about 1,000 light-years thick at
4176-405: Is the traditional Welsh name for the constellation Cassiopeia . At least three of Dôn's children also have astronomical associations: Caer Gwydion ("The fortress of Gwydion ") is the traditional Welsh name for the Milky Way, and Caer Arianrhod ("The Fortress of Arianrhod ") being the constellation of Corona Borealis . In Western culture, the name "Milky Way" is derived from its appearance as
4292-486: Is visible as a hazy band of white light, some 30° wide, arching the night sky . Although all the individual naked-eye stars in the entire sky are part of the Milky Way Galaxy, the term "Milky Way" is limited to this band of light. The light originates from the accumulation of unresolved stars and other material located in the direction of the galactic plane . Brighter regions around the band appear as soft visual patches known as star clouds . The most conspicuous of these
4408-655: The AB Dor Moving Group at only 120 million years. Moving groups were studied intensely by Olin Eggen in the 1960s. A list of the nearest young moving groups has been compiled by López-Santiago et al. The closest is the Ursa Major Moving Group which includes all of the stars in the Plough / Big Dipper asterism except for Dubhe and η Ursae Majoris . This is sufficiently close that
4524-509: The Argus Association (ARG), confirmed with Gaia. Moving groups can sometimes be further subdivided in smaller distinct groups. The Great Austral Young Association (GAYA) complex was found to be subdivided into the moving groups Carina , Columba , and Tucana-Horologium . The three Associations are not very distinct from each other, and have similar kinematic properties. Young moving groups have well known ages and can help with
4640-553: The Large Magellanic Cloud rather than the Milky Way . Further measurements placed its origin within the Milky Way. Due to uncertainty about the distribution of mass within the Milky Way, determining whether a HVS is unbound is difficult. A further five known high-velocity stars may be unbound from the Milky Way, and 16 HVSs are thought to be bound. The nearest currently known HVS (HVS2) is about 19 kpc from
4756-622: The Lupus T association , the Chamaeleon T association and the Velorum T association . T associations are often found in the vicinity of the molecular cloud from which they formed. Some, but not all, include O–B class stars. Group members have the same age and origin, the same chemical composition, and the same amplitude and direction in their vector of velocity. Associations of stars that illuminate reflection nebulae are called R associations ,
Hyades Stream - Misplaced Pages Continue
4872-409: The Milky Way . One of the two partners is gravitationally captured by the black hole (in the sense of entering orbit around it), while the other escapes with high velocity, becoming a HVS. Such maneuvers are analogous to the capture and ejection of interstellar objects by a star. Supernova-induced HVSs may also be possible, although they are presumably rare. In this scenario, a HVS is ejected from
4988-544: The Sun lies in its outer fringes, without being part of the group. Hence, although members are concentrated at declinations near 60°N, some outliers are as far away across the sky as Triangulum Australe at 70°S. The list of young moving groups is constantly evolving. The Banyan Σ tool currently lists 29 nearby young moving groups Recent additions to nearby moving groups are the Volans-Carina Association (VCA), discovered with Gaia , and
5104-628: The Sun moves through the Milky Way at about 20 km/s faster than the local average). Tracing their motions back, their paths intersect near to the Orion Nebula about 2 million years ago. Barnard's Loop is believed to be the remnant of the supernova that launched the other stars. Another example is the X-ray object Vela X-1 , where photodigital techniques reveal the presence of a typical supersonic bow shock hyperbola . Halo stars are very old stars that do not follow circular orbits around
5220-544: The Sun or the local standard of rest (LSR). The latter is typically taken as a position at the Sun's present location that is following a circular orbit around the Galactic Center at the mean velocity of those nearby stars with low velocity dispersion. The Sun's motion with respect to the LSR is called the "peculiar solar motion". The components of space velocity in the Milky Way 's Galactic coordinate system are usually designated U, V, and W, given in km/s, with U positive in
5336-499: The Very Long Baseline Array in 2009 found velocities as large as 254 km/s (570,000 mph) for stars at the outer edge of the Milky Way. Because the orbital velocity depends on the total mass inside the orbital radius, this suggests that the Milky Way is more massive, roughly equaling the mass of Andromeda Galaxy at 7 × 10 M ☉ within 160,000 ly (49 kpc) of its center. In 2010,
5452-416: The exoplanet host star Iota Horologii has recently been proposed as an escaped member of the primordial Hyades Cluster. Moving group Stellar kinematics encompasses the measurement of stellar velocities in the Milky Way and its satellites as well as the internal kinematics of more distant galaxies . Measurement of the kinematics of stars in different subcomponents of the Milky Way including
5568-484: The light-gathering power of this new telescope, he was able to produce astronomical photographs that resolved the outer parts of some spiral nebulae as collections of individual stars. He was also able to identify some Cepheid variables that he could use as a benchmark to estimate the distance to the nebulae. He found that the Andromeda Nebula is 275,000 parsecs from the Sun, far too distant to be part of
5684-614: The magnetic fields of the Milky Way were reported. The Sun is near the inner rim of the Orion Arm , within the Local Fluff of the Local Bubble , between the Radcliffe wave and Split linear structures (formerly Gould Belt ). Based upon studies of stellar orbits around Sgr A* by Gillessen et al. (2016), the Sun lies at an estimated distance of 27.14 ± 0.46 kly (8.32 ± 0.14 kpc) from
5800-440: The nebulae visible in the night sky might be separate "galaxies" themselves, similar to our own. Kant referred to both the Milky Way and the "extragalactic nebulae" as "island universes", a term still current up to the 1930s. The first attempt to describe the shape of the Milky Way and the position of the Sun within it was carried out by William Herschel in 1785 by carefully counting the number of stars in different regions of
5916-467: The solar apex , is the direction that the Sun travels through space in the Milky Way. The general direction of the Sun's Galactic motion is towards the star Vega near the constellation of Hercules , at an angle of roughly 60 sky degrees to the direction of the Galactic Center. The Sun's orbit about the Milky Way is expected to be roughly elliptical with the addition of perturbations due to
SECTION 50
#17327908185346032-438: The thin disk , the thick disk , the bulge , and the stellar halo provides important information about the formation and evolutionary history of our Galaxy. Kinematic measurements can also identify exotic phenomena such as hypervelocity stars escaping from the Milky Way, which are interpreted as the result of gravitational encounters of binary stars with the supermassive black hole at the Galactic Center . Stellar kinematics
6148-518: The Babylonian national god , after slaying her. This story was once thought to have been based on an older Sumerian version in which Tiamat is instead slain by Enlil of Nippur , but is now thought to be purely an invention of Babylonian propagandists with the intention to show Marduk as superior to the Sumerian deities. In Greek mythology , Zeus places his son born by a mortal woman,
6264-533: The Gaia satellite. As of 2014, twenty HVS were known. A set of stars with similar space motion and ages is known as a kinematic group. These are stars that could share a common origin, such as the evaporation of an open cluster , the remains of a star forming region, or collections of overlapping star formation bursts at differing time periods in adjacent regions. Most stars are born within molecular clouds known as stellar nurseries . The stars formed within such
6380-571: The Galactic Center is about 180,000 ly (55 kpc). At this distance or beyond, the orbits of most halo objects would be disrupted by the Magellanic Clouds. Hence, such objects would probably be ejected from the vicinity of the Milky Way. The integrated absolute visual magnitude of the Milky Way is estimated to be around −20.9. Both gravitational microlensing and planetary transit observations indicate that there may be at least as many planets bound to stars as there are stars in
6496-530: The Galactic Center. Boehle et al. (2016) found a smaller value of 25.64 ± 0.46 kly (7.86 ± 0.14 kpc), also using a star orbit analysis. The Sun is currently 5–30 parsecs (16–98 ly) above, or north of, the central plane of the Galactic disk. The distance between the local arm and the next arm out, the Perseus Arm , is about 2,000 parsecs (6,500 ly). The Sun, and thus
6612-399: The Galactic spiral arms and non-uniform mass distributions. In addition, the Sun passes through the Galactic plane approximately 2.7 times per orbit. This is very similar to how a simple harmonic oscillator works with no drag force (damping) term. These oscillations were until recently thought to coincide with mass lifeform extinction periods on Earth. A reanalysis of the effects of
6728-474: The Milky Way at steep angles. One of the nearest 45 stars, called Kapteyn's Star , is an example of the high-velocity stars that lie near the Sun: Its observed radial velocity is −245 km/s, and the components of its space velocity are u = +19 km/s, v = −288 km/s, and w = −52 km/s. Hypervelocity stars (designated as HVS or HV in stellar catalogues) have substantially higher velocities than
6844-584: The Milky Way contained all the stars in the Universe . Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Doust Curtis , observations by Edwin Hubble showed that the Milky Way is just one of many galaxies. In the Babylonian epic poem Enūma Eliš , the Milky Way is created from the severed tail of the primeval salt water dragoness Tiamat , set in the sky by Marduk ,
6960-405: The Milky Way is "a myriad of tiny stars packed together in the sphere of the fixed stars". Proof of the Milky Way consisting of many stars came in 1610 when Galileo Galilei used a telescope to study the Milky Way and discovered that it is composed of a huge number of faint stars. Galileo also concluded that the appearance of the Milky Way was due to refraction of the Earth's atmosphere. In
7076-446: The Milky Way is approximately 220 km/s (490,000 mph) or 0.073% of the speed of light . The Sun moves through the heliosphere at 84,000 km/h (52,000 mph). At this speed, it takes around 1,400 years for the Solar System to travel a distance of 1 light-year, or 8 days to travel 1 AU ( astronomical unit ). The Solar System is headed in the direction of the zodiacal constellation Scorpius , which follows
SECTION 60
#17327908185347192-449: The Milky Way is the glow of stars not directly visible due to Earth's shadow, while other stars receive their light from the Sun, but have their glow obscured by solar rays. Aristotle himself believed that the Milky Way was part of the Earth's upper atmosphere, along with the stars, and that it was a byproduct of stars burning that did not dissipate because of its outermost location in the atmosphere, composing its great circle . He said that
7308-428: The Milky Way seems to be dark matter , an unknown and invisible form of matter that interacts gravitationally with ordinary matter. A dark matter halo is conjectured to spread out relatively uniformly to a distance beyond one hundred kiloparsecs (kpc) from the Galactic Center. Mathematical models of the Milky Way suggest that the mass of dark matter is 1–1.5 × 10 M ☉ . 2013 and 2014 studies indicate
7424-404: The Milky Way". Viewing from the north galactic pole with 0° (zero degrees) as the ray that runs starting from the Sun and through the Galactic Center, the quadrants are: with the galactic longitude (ℓ) increasing in the counter-clockwise direction ( positive rotation ) as viewed from north of the Galactic Center (a view-point several hundred thousand light-years distant from Earth in
7540-514: The Milky Way's galactic plane occupies an area of the sky that includes 30 constellations . The Galactic Center lies in the direction of Sagittarius , where the Milky Way is brightest. From Sagittarius, the hazy band of white light appears to pass around to the galactic anticenter in Auriga . The band then continues the rest of the way around the sky, back to Sagittarius, dividing the sky into two roughly equal hemispheres . The galactic plane
7656-467: The Milky Way's structure. Notably, it facilitated the determination of proper motions for numerous celestial objects, including the absolute proper motions of 75 globular clusters situated at distances extending up to G = 21 {\displaystyle G=21} and a bright limit of G ≈ {\displaystyle G\approx } 3 {\displaystyle 3} . Furthermore, Gaia's comprehensive dataset enabled
7772-530: The Milky Way, and microlensing measurements indicate that there are more rogue planets not bound to host stars than there are stars. The Milky Way contains an average of at least one planet per star, resulting in 100–400 billion planets, according to a January 2013 study of the five-planet star system Kepler-32 by the Kepler space observatory. A different January 2013 analysis of Kepler data estimated that at least 17 billion Earth-sized exoplanets reside in
7888-438: The Milky Way. The ESA spacecraft Gaia provides distance estimates by determining the parallax of a billion stars and is mapping the Milky Way with four planned releases of maps in 2016, 2018, 2021 and 2024. Data from Gaia has been described as "transformational". It has been estimated that Gaia has expanded the number of observations of stars from about 2 million stars as of the 1990s to 2 billion. It has expanded
8004-437: The Milky Way. In November 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs within the Milky Way. 11 billion of these estimated planets may be orbiting Sun-like stars. The nearest exoplanet may be 4.2 light-years away, orbiting the red dwarf Proxima Centauri , according to
8120-501: The Solar System, is located in the Milky Way's galactic habitable zone . There are about 208 stars brighter than absolute magnitude 8.5 within a sphere with a radius of 15 parsecs (49 ly) from the Sun, giving a density of one star per 69 cubic parsecs, or one star per 2,360 cubic light-years (from List of nearest bright stars ). On the other hand, there are 64 known stars (of any magnitude, not counting 4 brown dwarfs ) within 5 parsecs (16 ly) of
8236-411: The Sun's transit through the spiral structure based on CO data has failed to find a correlation. It takes the Solar System about 240 million years to complete one orbit of the Milky Way (a galactic year ), so the Sun is thought to have completed 18–20 orbits during its lifetime and 1/1250 of a revolution since the origin of humans . The orbital speed of the Solar System about the center of
8352-412: The Sun, giving a density of about one star per 8.2 cubic parsecs, or one per 284 cubic light-years (from List of nearest stars ). This illustrates the fact that there are far more faint stars than bright stars: in the entire sky, there are about 500 stars brighter than apparent magnitude 4 but 15.5 million stars brighter than apparent magnitude 14. The apex of the Sun's way, or
8468-463: The Sun, known as radial velocity , can be measured from the spectrum shift caused by the Doppler effect . The transverse, or proper motion must be found by taking a series of positional determinations against more distant objects. Once the distance to a star is determined through astrometric means such as parallax , the space velocity can be computed. This is the star's actual motion relative to
8584-541: The Sun. As of 1 September 2017 , there have been roughly 20 observed hypervelocity stars. Though most of these were observed in the Northern Hemisphere , the possibility remains that there are HVSs only observable from the Southern Hemisphere . It is believed that about 1,000 HVSs exist in the Milky Way. Considering that there are around 100 billion stars in the Milky Way , this
8700-412: The categorization is not always clear-cut. Young associations will contain 10 to 100 massive stars of spectral class O and B , and are known as OB associations . In addition, these associations also contain hundreds or thousands of low- and intermediate-mass stars. Association members are believed to form within the same small volume inside a giant molecular cloud . Once the surrounding dust and gas
8816-408: The center of the Milky Way within its disk. Instead, the halo stars travel in elliptical orbits, often inclined to the disk, which take them well above and below the plane of the Milky Way. Although their orbital velocities relative to the Milky Way may be no faster than disk stars, their different paths result in high relative velocities. Typical examples are the halo stars passing through the disk of
8932-482: The center of the Milky Way. Beyond a radius of roughly 40,000 light years (13 kpc) from the center, the number of stars per cubic parsec drops much faster with radius. Surrounding the galactic disk is a spherical galactic halo of stars and globular clusters that extends farther outward, but is limited in size by the orbits of two Milky Way satellites, the Large and Small Magellanic Clouds , whose closest approach to
9048-584: The characterization of objects with hard-to-estimate ages , such as brown dwarfs . Members of nearby young moving groups are also candidates for directly imaged protoplanetary disks , such as TW Hydrae or directly imaged exoplanets , such as Beta Pictoris b or GU Psc b . A stellar stream is an association of stars orbiting a galaxy that was once a globular cluster or dwarf galaxy that has now been torn apart and stretched out along its orbit by tidal forces. Some nearby kinematic groups include: Milky Way#Galactic rotation The Milky Way
9164-571: The current age of the Sun at about five billion years.) The Hipparcos satellite provided measurements that located a dozen OB associations within 650 parsecs of the Sun. The nearest OB association is the Scorpius–Centaurus association , located about 400 light-years from the Sun . OB associations have also been found in the Large Magellanic Cloud and the Andromeda Galaxy . These associations can be quite sparse, spanning 1,500 light-years in diameter. Young stellar groups can contain
9280-570: The direction of the Galactic Center, V positive in the direction of galactic rotation , and W positive in the direction of the North Galactic Pole . The peculiar motion of the Sun with respect to the LSR is with statistical uncertainty (+0.69−0.75, +0.47−0.47, +0.37−0.36) km/s and systematic uncertainty (1, 2, 0.5) km/s. (Note that V is 7 km/s larger than estimated in 1998 by Dehnen et al. ) Stellar kinematics yields important astrophysical information about stars, and
9396-471: The direction of the constellation Coma Berenices ); if viewed from south of the Galactic Center (a view-point similarly distant in the constellation Sculptor ), ℓ would increase in the clockwise direction ( negative rotation ). The Milky Way is one of the two largest galaxies in the Local Group (the other being the Andromeda Galaxy ), although the size for its galactic disc and how much it defines
9512-469: The ecliptic. A galactic quadrant, or quadrant of the Milky Way, refers to one of four circular sectors in the division of the Milky Way. In astronomical practice, the delineation of the galactic quadrants is based upon the galactic coordinate system , which places the Sun as the origin of the mapping system . Quadrants are described using ordinals – for example, "1st galactic quadrant", "second galactic quadrant", or "third quadrant of
9628-480: The fastest known stars in our Galaxy is the O-class sub-dwarf US 708 , which is moving away from the Milky Way with a total velocity of around 1200 km/s. Jack G. Hills first predicted the existence of HVSs in 1988. This was later confirmed in 2005 by Warren Brown, Margaret Geller , Scott Kenyon , and Michael Kurtz . As of 2008, 10 unbound HVSs were known, one of which is believed to have originated from
9744-570: The galaxies in which they reside. Stellar kinematics data combined with astrophysical modeling produces important information about the galactic system as a whole. Measured stellar velocities in the innermost regions of galaxies including the Milky Way have provided evidence that many galaxies host supermassive black holes at their center. In farther out regions of galaxies such as within the galactic halo, velocity measurements of globular clusters orbiting in these halo regions of galaxies provides evidence for dark matter . Both of these cases derive from
9860-409: The hydrogen found in the atomic form and the remaining one-third as molecular hydrogen . The mass of the Milky Way's interstellar gas is equal to between 10% and 15% of the total mass of its stars. Interstellar dust accounts for an additional 1% of the total mass of the gas. In March 2019, astronomers reported that the virial mass of the Milky Way Galaxy is 1.54 trillion solar masses within
9976-480: The impetus for its stellar motion. Examples of using kinematics combined with modeling to construct an astrophysical system include: In 2018, the Gaia Data Release 2 (GAIA DR2) marked a significant advancement in stellar kinematics, offering a rich dataset of precise measurements. This release included detailed stellar kinematic and stellar parallax data, contributing to a more nuanced understanding of
10092-527: The infant Heracles , on Hera 's breast while she is asleep so the baby will drink her divine milk and become immortal. Hera wakes up while breastfeeding and then realizes she is nursing an unknown baby: she pushes the baby away, some of her milk spills, and it produces the band of light known as the Milky Way. In another Greek story, the abandoned Heracles is given by Athena to Hera for feeding, but Heracles' forcefulness causes Hera to rip him from her breast in pain. Llys Dôn (literally "The Court of Dôn ")
10208-436: The isophotal diameter is not well understood. It is estimated that the significant bulk of stars in the galaxy lies within the 26 kiloparsecs (80,000 light-years) diameter, and that the number of stars beyond the outermost disc dramatically reduces to a very low number, with respect to an extrapolation of the exponential disk with the scale length of the inner disc. There are several methods being used in astronomy in defining
10324-413: The key fact that stellar kinematics can be related to the overall potential in which the stars are bound. This means that if accurate stellar kinematics measurements are made for a star or group of stars orbiting in a certain region of a galaxy, the gravitational potential and mass distribution can be inferred given that the gravitational potential in which the star is bound produces its orbit and serves as
10440-526: The measurable volume of space by a factor of 100 in radius and a factor of 1,000 in precision. A study in 2020 concluded that Gaia detected a wobbling motion of the galaxy, which might be caused by " torques from a misalignment of the disc's rotation axis with respect to the principal axis of a non-spherical halo, or from accreted matter in the halo acquired during late infall, or from nearby, interacting satellite galaxies and their consequent tides". In April 2024, initial studies (and related maps) involving
10556-461: The measurement of absolute proper motions in nearby dwarf spheroidal galaxies , serving as crucial indicators for understanding the mass distribution within the Milky Way. GAIA DR3 improved the quality of previously published data by providing detailed astrophysical parameters. While the complete GAIA DR4 is yet to be unveiled, the latest release offers enhanced insights into white dwarfs, hypervelocity stars , cosmological gravitational lensing , and
10672-452: The merger history of the Galaxy . Stars within galaxies may be classified based on their kinematics. For example, the stars in the Milky Way can be subdivided into two general populations, based on their metallicity , or proportion of elements with atomic numbers higher than helium. Among nearby stars, it has been found that population I stars with higher metallicity are generally located in
10788-531: The milky appearance of the Milky Way Galaxy is due to the refraction of the Earth's atmosphere. The Neoplatonist philosopher Olympiodorus the Younger ( c. 495 –570 AD) criticized this view, arguing that if the Milky Way were sublunary , it should appear different at different times and places on Earth, and that it should have parallax , which it does not. In his view, the Milky Way
10904-589: The nature of the Milky Way, spiral nebulae, and the dimensions of the Universe. To support his claim that the Great Andromeda Nebula is an external galaxy, Curtis noted the appearance of dark lanes resembling the dust clouds in the Milky Way, as well as the significant Doppler shift . The controversy was conclusively settled by Edwin Hubble in the early 1920s using the Mount Wilson observatory 2.5 m (100 in) Hooker telescope . With
11020-491: The nature of the star's formation time, its present location, and the general structure of the galaxy. As a star moves in a galaxy, the smoothed out gravitational potential of all the other stars and other mass within the galaxy plays a dominant role in determining the stellar motion. Stellar kinematics can provide insights into the location of where the star formed within the galaxy. Measurements of an individual star's kinematics can identify stars that are peculiar outliers such as
11136-405: The number of very-low-mass stars, which are difficult to detect, especially at distances of more than 300 ly (90 pc) from the Sun. As a comparison, the neighboring Andromeda Galaxy contains an estimated one trillion (10 ) stars. The Milky Way may contain ten billion white dwarfs , a billion neutron stars , and a hundred million stellar black holes . Filling the space between the stars
11252-433: The old population of the galactic halo. A 2020 study predicted the edge of the Milky Way's dark matter halo being around 292 ± 61 kpc (952,000 ± 199,000 ly ), which translates to a diameter of 584 ± 122 kpc (1.905 ± 0.3979 Mly ). The Milky Way's stellar disk is also estimated to be approximately up to 1.35 kpc (4,000 ly) thick. The Milky Way
11368-499: The ones in the Milky Way, and modelling the relationship to their surface brightnesses. This gave an isophotal diameter for the Milky Way at 26.8 ± 1.1 kiloparsecs (87,400 ± 3,600 light-years), by assuming that the galactic disc is well represented by an exponential disc and adopting a central surface brightness of the galaxy (μ 0 ) of 22.1 ± 0.3 B -mag/arcsec and a disk scale length ( h ) of 5.0 ± 0.5 kpc (16,300 ± 1,600 ly). This
11484-450: The onset of a merger between two white dwarfs in a binary star system, triggering the explosion of the more massive white dwarf. If the less massive white dwarf is not destroyed during the explosion, it will no longer be gravitationally bound to its destroyed companion, causing it to leave the system as a hypervelocity star with its pre-explosion orbital velocity of 1000–2500 km/s. In 2018, three such stars were discovered using data from
11600-528: The photographic record, he found 11 more novae . Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within the Milky Way. As a result, he was able to come up with a distance estimate of 150,000 parsecs. He became a proponent of the "island universes" hypothesis, which held that the spiral nebulae were independent galaxies. In 1920 the Great Debate took place between Harlow Shapley and Heber Curtis, concerning
11716-413: The properties of their stars. A third category, R, was later suggested by Sidney van den Bergh for associations that illuminate reflection nebulae . The OB, T, and R associations form a continuum of young stellar groupings. But it is currently uncertain whether they are an evolutionary sequence, or represent some other factor at work. Some groups also display properties of both OB and T associations, so
11832-400: The relative physical scale of the Milky Way, if the Solar System out to Neptune were the size of a US quarter (24.3 mm (0.955 in)), the Milky Way would be approximately at least the greatest north–south line of the contiguous United States . An even older study from 1978 gave a lower diameter for Milky Way about 23 kpc (75,000 ly). A 2015 paper discovered that there
11948-456: The rest of the stellar population of a galaxy. Some of these stars may even exceed the escape velocity of the galaxy. In the Milky Way, stars usually have velocities on the order of 100 km/s, whereas hypervelocity stars typically have velocities on the order of 1000 km/s. Most of these fast-moving stars are thought to be produced near the center of the Milky Way, where there is a larger population of these objects than further out. One of
12064-501: The result of an asymmetric supernova explosion or the loss of their near partner during the supernova explosions that forms them. The neutron star RX J0822-4300 , which was measured to move at a record speed of over 1,500 km/s (0.5% of the speed of light ) in 2007 by the Chandra X-ray Observatory , is thought to have been produced the first way. One theory regarding the ignition of Type Ia supernovae invokes
12180-470: The result of other dynamical mechanisms. Famaey B, et al. report that about 85% of stars in the Hyades Stream have been shown to be completely unrelated to the original cluster on the grounds of dissimilar age and metallicity ; their common motion is attributed to tidal effects of the massive rotating bar at the center of the Milky Way Galaxy . Among the remaining members of the Hyades Stream,
12296-593: The root of "galaxy", the name for our, and later all such, collections of stars. The Milky Way, or "milk circle", was just one of 11 "circles" the Greeks identified in the sky, others being the zodiac , the meridian , the horizon , the equator , the tropics of Cancer and Capricorn , the Arctic Circle and the Antarctic Circle , and two colure circles passing through both poles. The Milky Way
12412-516: The size of a galaxy, and each of them can yield different results with respect to one another. The most commonly employed method is the D 25 standard – the isophote where the photometric brightness of a galaxy in the B-band (445 nm wavelength of light, in the blue part of the visible spectrum ) reaches 25 mag/arcsec . An estimate from 1997 by Goodwin and others compared the distribution of Cepheid variable stars in 17 other spiral galaxies to
12528-542: The south galactic pole is near α Sculptoris . Because of this high inclination, depending on the time of night and year, the Milky Way arch may appear relatively low or relatively high in the sky. For observers from latitudes approximately 65° north to 65° south, the Milky Way passes directly overhead twice a day. In Meteorologica , Aristotle (384–322 BC) states that the Greek philosophers Anaxagoras ( c. 500 –428 BC) and Democritus (460–370 BC) proposed that
12644-544: The spiral arms (more at the bulge). Recent simulations suggest that a dark matter area, also containing some visible stars, may extend up to a diameter of almost 2 million light-years (613 kpc). The Milky Way has several satellite galaxies and is part of the Local Group of galaxies, which form part of the Virgo Supercluster , which is itself a component of the Laniakea Supercluster . It
12760-524: The stellar disk larger by increasing to this size. A more recent 2018 paper later somewhat ruled out this hypothesis, and supported a conclusion that the Monoceros Ring, A13 and TriAnd Ring were stellar overdensities rather kicked out from the main stellar disk, with the velocity dispersion of the RR Lyrae stars found to be higher and consistent with halo membership. Another 2018 study revealed
12876-530: The stellar disk while older population II stars are in random orbits with little net rotation. The latter have elliptical orbits that are inclined to the plane of the Milky Way. Comparison of the kinematics of nearby stars has also led to the identification of stellar associations . These are most likely groups of stars that share a common point of origin in giant molecular clouds. There are many additional ways to classify stars based on their measured velocity components, and this provides detailed information about
12992-449: The structure of the galactic spiral arms. An example of an R association is Monoceros R2 , located 830 ± 50 parsecs from the Sun. If the remnants of a stellar association drift through the Milky Way as a somewhat coherent assemblage, then they are termed a moving group or kinematic group . Moving groups can be old, such as the HR 1614 moving group at two billion years, or young, such as
13108-508: The universe, the Milky Way galaxy has a below average amount of neutrino luminosity making our galaxy a " neutrino desert ". The Milky Way consists of a bar-shaped core region surrounded by a warped disk of gas, dust and stars. The mass distribution within the Milky Way closely resembles the type Sbc in the Hubble classification , which represents spiral galaxies with relatively loosely wound arms. Astronomers first began to conjecture that
13224-399: The very probable presence of disk stars at 26–31.5 kpc (84,800–103,000 ly) from the Galactic Center or perhaps even farther, significantly beyond approximately 13–20 kpc (40,000–70,000 ly), in which it was once believed to be the abrupt drop-off of the stellar density of the disk, meaning that few or no stars were expected to be above this limit, save for stars that belong to
13340-478: The visible sky. He produced a diagram of the shape of the Milky Way with the Solar System close to the center. In 1845, Lord Rosse constructed a new telescope and was able to distinguish between elliptical and spiral-shaped nebulae. He also managed to make out individual point sources in some of these nebulae, lending credence to Kant's earlier conjecture. In 1904, studying the proper motions of stars, Jacobus Kapteyn reported that these were not random, as it
13456-515: Was believed in that time; stars could be divided into two streams, moving in nearly opposite directions. It was later realized that Kapteyn's data had been the first evidence of the rotation of our galaxy, which ultimately led to the finding of galactic rotation by Bertil Lindblad and Jan Oort . In 1917, Heber Doust Curtis had observed the nova S Andromedae within the Great Andromeda Nebula ( Messier object 31). Searching
#533466