113-687: Terrain contour matching , or TERCOM , is a navigation system used primarily by cruise missiles . It uses a contour map of the terrain that is compared with measurements made during flight by an on-board radar altimeter . A TERCOM system considerably increases the accuracy of a missile compared with inertial navigation systems (INS). The increased accuracy allows a TERCOM-equipped missile to fly closer to obstacles and at generally lower altitudes, making it harder to detect by ground radar. The Goodyear Aircraft Corporation ATRAN ( Automatic Terrain Recognition And Navigation ) system for
226-513: A misnomer , as their energy comes from the nucleus of the atom, just as it does with fusion weapons. In fission weapons, a mass of fissile material ( enriched uranium or plutonium ) is forced into supercriticality —allowing an exponential growth of nuclear chain reactions —either by shooting one piece of sub-critical material into another (the "gun" method) or by compression of a sub-critical sphere or cylinder of fissile material using chemically fueled explosive lenses . The latter approach,
339-665: A policy of deliberate ambiguity , it does not acknowledge having them. Germany , Italy , Turkey , Belgium , the Netherlands , and Belarus are nuclear weapons sharing states. South Africa is the only country to have independently developed and then renounced and dismantled its nuclear weapons. The Treaty on the Non-Proliferation of Nuclear Weapons aims to reduce the spread of nuclear weapons, but there are different views of its effectiveness. There are two basic types of nuclear weapons: those that derive
452-554: A Syrian airbase in retaliation for a Syrian chemical weapons attack against a rebel stronghold. The United States Air Force (USAF) deploys an air-launched cruise missile, the AGM-86 ALCM . The Boeing B-52 Stratofortress is the exclusive delivery vehicle for the AGM-86 and AGM-129 ACM . Both missile types are configurable for either conventional or nuclear warheads. The USAF adopted the AGM-86 for its bomber fleet while AGM-109
565-565: A bomber carrying the same payload. The main advantages were speed (although not sufficient to outperform contemporary propeller-driven interceptors) and expendability. The production cost of a V-1 was only a small fraction of that of a V-2 supersonic ballistic missile with a similar-sized warhead. Unlike the V-2, the initial deployments of the V-1 required stationary launch ramps which were susceptible to bombardment. Nazi Germany, in 1943, also developed
678-696: A conference—called for in the manifesto—in Pugwash, Nova Scotia , Eaton's birthplace. This conference was to be the first of the Pugwash Conferences on Science and World Affairs , held in July 1957. By the 1960s, steps were taken to limit both the proliferation of nuclear weapons to other countries and the environmental effects of nuclear testing . The Partial Nuclear Test Ban Treaty (1963) restricted all nuclear testing to underground nuclear testing , to prevent contamination from nuclear fallout, whereas
791-548: A conventional or a nuclear warhead, while smaller ones carry only conventional warheads. A hypersonic cruise missile travels at least five times the speed of sound ( Mach 5). These missiles travel faster than the speed of sound, usually using ramjet engines. The range is typically 100–500 km, but can be greater. Guidance systems vary. Examples: The United States, Russia, North Korea, India, Iran, South Korea, Israel, France, China and Pakistan have developed several long-range subsonic cruise missiles. These missiles have
904-458: A faster and less vulnerable attack, the development of long-range intercontinental ballistic missiles (ICBMs) and submarine-launched ballistic missiles (SLBMs) has given some nations the ability to plausibly deliver missiles anywhere on the globe with a high likelihood of success. More advanced systems, such as multiple independently targetable reentry vehicles (MIRVs), can launch multiple warheads at different targets from one missile, reducing
1017-614: A few nations possess such weapons or are suspected of seeking them. The only countries known to have detonated nuclear weapons—and acknowledge possessing them—are (chronologically by date of first test) the United States , the Soviet Union (succeeded as a nuclear power by Russia ), the United Kingdom , France , China , India , Pakistan , and North Korea . Israel is believed to possess nuclear weapons, though, in
1130-555: A fission bomb to initiate them. Such a device might provide a simpler path to thermonuclear weapons than one that required the development of fission weapons first, and pure fusion weapons would create significantly less nuclear fallout than other thermonuclear weapons because they would not disperse fission products. In 1998, the United States Department of Energy divulged that the United States had, "...made
1243-421: A fusion weapon as of January 2016 , though this claim is disputed. Thermonuclear weapons are considered much more difficult to successfully design and execute than primitive fission weapons. Almost all of the nuclear weapons deployed today use the thermonuclear design because it results in an explosion hundreds of times stronger than that of a fission bomb of similar weight. Thermonuclear bombs work by using
SECTION 10
#17328023037661356-567: A hypersonic cruise missile in August 2021, a claim it denies. The French Force de Frappe nuclear forces include both land and sea-based bombers with Air-Sol Moyenne Portée (ASMP) high-speed medium-range nuclear cruise missiles. Two models are in use, ASMP and a newer ASMP-Amelioré (ASMP-A), which was developed in 1999. An estimated 40 to 50 were produced. India in 2017 successfully flight-tested its indigenous Nirbhay ('Fearless') land-attack cruise missile, which can deliver nuclear warheads to
1469-411: A missile-sized package was far too small to encompass the entire flight. Instead, small patches of terrain information were stored and periodically used to update a conventional inertial platform . These systems, combining TERCOM and inertial navigation, are sometimes known as TAINS , for TERCOM-Aided Inertial Navigation System. TERCOM systems have the advantage of offering accuracy that is not based on
1582-472: A nation's economic electronics-based infrastructure. Because the effect is most effectively produced by high altitude nuclear detonations (by military weapons delivered by air, though ground bursts also produce EMP effects over a localized area), it can produce damage to electronics over a wide, even continental, geographical area. Research has been done into the possibility of pure fusion bombs : nuclear weapons that consist of fusion reactions without requiring
1695-537: A new nuclear strategy, one that is distinct from that which gave relative stability during the Cold War. Since 1996, the United States has had a policy of allowing the targeting of its nuclear weapons at terrorists armed with weapons of mass destruction . Robert Gallucci argues that although traditional deterrence is not an effective approach toward terrorist groups bent on causing a nuclear catastrophe, Gallucci believes that "the United States should instead consider
1808-425: A nuclear war between two nations would result in mutual annihilation. From this point of view, the significance of nuclear weapons is to deter war because any nuclear war would escalate out of mutual distrust and fear, resulting in mutually assured destruction . This threat of national, if not global, destruction has been a strong motivation for anti-nuclear weapons activism. Critics from the peace movement and within
1921-411: A nuclear weapon from another country by threatening nuclear retaliation is known as the strategy of nuclear deterrence . The goal in deterrence is to always maintain a second strike capability (the ability of a country to respond to a nuclear attack with one of its own) and potentially to strive for first strike status (the ability to destroy an enemy's nuclear forces before they could retaliate). During
2034-465: A nuclear weapon is a gravity bomb dropped from aircraft ; this was the method used by the United States against Japan in 1945. This method places few restrictions on the size of the weapon. It does, however, limit attack range, response time to an impending attack, and the number of weapons that a country can field at the same time. With miniaturization, nuclear bombs can be delivered by both strategic bombers and tactical fighter-bombers . This method
2147-409: A nuclear weapon to its target is an important factor affecting both nuclear weapon design and nuclear strategy . The design, development, and maintenance of delivery systems are among the most expensive parts of a nuclear weapons program; they account, for example, for 57% of the financial resources spent by the United States on nuclear weapons projects since 1940. The simplest method for delivering
2260-433: A nuclear weapon with suitable materials (such as cobalt or gold ) creates a weapon known as a salted bomb . This device can produce exceptionally large quantities of long-lived radioactive contamination . It has been conjectured that such a device could serve as a "doomsday weapon" because such a large quantity of radioactivities with half-lives of decades, lifted into the stratosphere where winds would distribute it around
2373-421: A policy of expanded deterrence, which focuses not solely on the would-be nuclear terrorists but on those states that may deliberately transfer or inadvertently leak nuclear weapons and materials to them. By threatening retaliation against those states, the United States may be able to deter that which it cannot physically prevent.". Graham Allison makes a similar case, arguing that the key to expanded deterrence
SECTION 20
#17328023037662486-463: A range of over 1,000 kilometres (620 mi) and fly at about 800 kilometres per hour (500 mph). They typically have a launch weight of about 1,500 kilograms (3,300 lb) and can carry either a conventional or a nuclear warhead. Earlier versions of these missiles used inertial navigation ; later versions use much more accurate TERCOM and DSMAC systems. Most recent versions can use satellite navigation . Examples: These missiles are about
2599-400: A relatively low resolution in these areas. Only the portion of the map for the terminal approach has to be higher resolution, and would normally be encoded at the highest resolutions available to the satellite mapping system. Due to the limited amount of memory available in mass storage devices of the 1960s and 70s, and their slow access times, the amount of terrain data that could be stored in
2712-422: A series of squares of a selected size. Using a smaller number of larger squares saves memory, at the cost of decreasing accuracy. A series of such maps are produced, typically from data from radar mapping satellites. When flying over water, contour maps are replaced by magnetic field maps. As a radar altimeter measures the distance between the missile and the terrain, not the absolute altitude compared to sea level,
2825-447: A significant portion of their energy from fission reactions used to "trigger" fusion reactions, and fusion reactions can themselves trigger additional fission reactions. Only six countries—the United States , Russia , the United Kingdom , China , France , and India —have conducted thermonuclear weapon tests. Whether India has detonated a "true" multi-staged thermonuclear weapon is controversial. North Korea claims to have tested
2938-619: A strike range of 1,000 km. Nirbhay had been flight-tested successfully. India currently operates 7 variants of Brahmos cruise missile operational range of 300-1000 km. India is currently developing hypersonic BRAHMOS-II which is going to be the fastest cruise missile. The Israel Defense Forces reportedly deploy the medium-range air-launched Popeye Turbo ALCM and the Popeye Turbo SLCM medium-long range cruise missile with nuclear warheads on Dolphin class submarines . Pakistan currently has four cruise missile systems:
3051-550: A substantial investment" in the past to develop pure fusion weapons, but that, "The U.S. does not have and is not developing a pure fusion weapon", and that, "No credible design for a pure fusion weapon resulted from the DOE investment". Nuclear isomers provide a possible pathway to fissionless fusion bombs. These are naturally occurring isotopes ( Hf being a prominent example) which exist in an elevated energy state. Mechanisms to release this energy as bursts of gamma radiation (as in
3164-420: Is a thermonuclear weapon that yields a relatively small explosion but a relatively large amount of neutron radiation . Such a weapon could, according to tacticians, be used to cause massive biological casualties while leaving inanimate infrastructure mostly intact and creating minimal fallout. Because high energy neutrons are capable of penetrating dense matter, such as tank armor, neutron warheads were procured in
3277-721: Is an explosive device that derives its destructive force from nuclear reactions , either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb ), producing a nuclear explosion . Both bomb types release large quantities of energy from relatively small amounts of matter . The first test of a fission ("atomic") bomb released an amount of energy approximately equal to 20,000 tons of TNT (84 TJ ). The first thermonuclear ("hydrogen") bomb test released energy approximately equal to 10 million tons of TNT (42 PJ). Nuclear bombs have had yields between 10 tons TNT (the W54 ) and 50 megatons for
3390-456: Is analogous to identifying a criminal by fingerprints. "The goal would be twofold: first, to deter leaders of nuclear states from selling weapons to terrorists by holding them accountable for any use of their weapons; second, to give leaders every incentive to tightly secure their nuclear weapons and materials." According to the Pentagon's June 2019 " Doctrine for Joint Nuclear Operations " of
3503-403: Is coming up with ways of tracing nuclear material to the country that forged the fissile material. "After a nuclear bomb detonates, nuclear forensics cops would collect debris samples and send them to a laboratory for radiological analysis. By identifying unique attributes of the fissile material, including its impurities and contaminants, one could trace the path back to its origin." The process
TERCOM - Misplaced Pages Continue
3616-481: Is for the purpose of achieving different yields for different situations , and in manipulating design elements to attempt to minimize weapon size, radiation hardness or requirements for special materials, especially fissile fuel or tritium. Some nuclear weapons are designed for special purposes; most of these are for non-strategic (decisively war-winning) purposes and are referred to as tactical nuclear weapons . The neutron bomb purportedly conceived by Sam Cohen
3729-503: Is no evidence that it is feasible beyond the military domain. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War , and began considering its possible use in weapons, not just as a trigger, but as the explosive itself. A fourth generation nuclear weapon design is related to, and relies upon, the same principle as antimatter-catalyzed nuclear pulse propulsion . Most variation in nuclear weapon design
3842-409: Is not a fusion bomb. In the boosted bomb, the neutrons produced by the fusion reactions serve primarily to increase the efficiency of the fission bomb. There are two types of boosted fission bomb: internally boosted, in which a deuterium-tritium mixture is injected into the bomb core, and externally boosted, in which concentric shells of lithium-deuteride and depleted uranium are layered on the outside of
3955-490: Is not clear that this has ever been implemented, and their plausible use in nuclear weapons is a matter of dispute. The other basic type of nuclear weapon produces a large proportion of its energy in nuclear fusion reactions. Such fusion weapons are generally referred to as thermonuclear weapons or more colloquially as hydrogen bombs (abbreviated as H-bombs ), as they rely on fusion reactions between isotopes of hydrogen ( deuterium and tritium ). All such weapons derive
4068-432: Is that its users face difficult choices in target allocation , to avoid expending the missiles on targets of low value. For instance, during the 2001 strikes on Afghanistan the United States attacked targets of very low monetary value with cruise missiles, which led many to question the efficiency of the weapon. However, proponents of the cruise missile counter that the weapon can not be blamed for poor target selection, and
4181-454: Is the primary means of nuclear weapons delivery; the majority of U.S. nuclear warheads, for example, are free-fall gravity bombs, namely the B61 , which is being improved upon to this day. Preferable from a strategic point of view is a nuclear weapon mounted on a missile , which can use a ballistic trajectory to deliver the warhead over the horizon. Although even short-range missiles allow for
4294-406: Is to place an ordnance or special payload on a target. Cruise missiles are designed to deliver a large warhead over long distances with high precision. Modern cruise missiles are capable of traveling at high subsonic , supersonic , or hypersonic speeds, are self-navigating, and are able to fly on a non- ballistic , extremely low-altitude trajectory. The idea of an "aerial torpedo" was shown in
4407-624: The Babur missile Both the People's Republic of China and the Republic of China ( Taiwan ) have designed several cruise missile variants, such as the well-known C-802 , some of which are capable of carrying biological, chemical, nuclear, and conventional warheads. China has the CJ-10 land attack cruise missile which is capable of carrying a nuclear warhead. Additionally, China appears to have tested
4520-688: The MGM-13 Mace was the earliest known TERCOM system. In August 1952, Air Materiel Command initiated the mating of the Goodyear ATRAN with the MGM-1 Matador . This mating resulted in a production contract in June 1954. ATRAN was difficult to jam and was not range-limited by line-of sight, but its range was restricted by the availability of radar maps. In time, it became possible to construct radar maps from topographic maps . Preparation of
4633-473: The Mistel composite aircraft program, which can be seen as a rudimentary air-launched cruise missile, where a piloted fighter-type aircraft was mounted atop an unpiloted bomber-sized aircraft that was packed with explosives to be released while approaching the target. Bomber-launched variants of the V-1 saw limited operational service near the end of the war, with the pioneering V-1's design reverse-engineered by
TERCOM - Misplaced Pages Continue
4746-632: The Pakistan Army since 2010, and Pakistan Navy since 2018. Russia has Kh-55SM cruise missiles, with a range similar to the United States' AGM-129 range of 3000 km, but are able to carry a more powerful warhead of 200 kt. They are equipped with a TERCOM system which allows them to cruise at an altitude lower than 110 meters at subsonic speeds while obtaining a CEP accuracy of 15 meters with an inertial navigation system . They are air-launched from either Tupolev Tu-95s , Tupolev Tu-22Ms , or Tupolev Tu-160s , each able to carry 16 for
4859-547: The Soviet Union , Sergei Korolev headed the GIRD -06 cruise missile project from 1932 to 1939, which used a rocket-powered boost- glide bomb design. The 06/III (RP-216) and 06/IV (RP-212) contained gyroscopic guidance systems. The vehicle was designed to boost to 28 km (17 mi) altitude and glide a distance of 280 km (170 mi), but test flights in 1934 and 1936 only reached an altitude of 500 metres (1,600 ft). In 1944, during World War II , Germany deployed
4972-695: The Starfish Prime high-altitude nuclear test in 1962, an unexpected effect was produced which is called a nuclear electromagnetic pulse . This is an intense flash of electromagnetic energy produced by a rain of high-energy electrons which in turn are produced by a nuclear bomb's gamma rays. This flash of energy can permanently destroy or disrupt electronic equipment if insufficiently shielded. It has been proposed to use this effect to disable an enemy's military and civilian infrastructure as an adjunct to other nuclear or conventional military operations. By itself it could as well be useful to terrorists for crippling
5085-554: The Tsar Bomba (see TNT equivalent ). A thermonuclear weapon weighing as little as 600 pounds (270 kg) can release energy equal to more than 1.2 megatonnes of TNT (5.0 PJ). A nuclear device no larger than a conventional bomb can devastate an entire city by blast, fire, and radiation . Since they are weapons of mass destruction , the proliferation of nuclear weapons is a focus of international relations policy. Nuclear weapons have been deployed twice in war , both by
5198-676: The Tsar Bomba of the USSR, which released an energy equivalent of over 50 megatons of TNT (210 PJ), was a three-stage weapon. Most thermonuclear weapons are considerably smaller than this, due to practical constraints from missile warhead space and weight requirements. In the early 1950s the Livermore Laboratory in the United States had plans for the testing of two massive bombs, Gnomon and Sundial , 1 gigaton of TNT and 10 gigatons of TNT respectively. Fusion reactions do not create fission products, and thus contribute far less to
5311-649: The United States Army developed a similar flying bomb called the Kettering Bug . Germany had also flown trials with remote-controlled aerial gliders ( Torpedogleiter ) built by Siemens-Schuckert beginning in 1916. In the Interwar Period, Britain's Royal Aircraft Establishment developed the Larynx (Long Range Gun with Lynx Engine) , which underwent a few flight tests in the 1920s. In
5424-409: The air-launched Ra'ad-I and its enhanced version Ra'ad-II ; the ground and submarine launched Babur ; ship-launched Harbah missile and surface launched Zarb missile . Both, Ra'ad and Babur , can carry nuclear warheads between 10 and 25 kt, and deliver them to targets at a range of up to 300 km (190 mi) and 450 km (280 mi) respectively. Babur has been in service with
5537-424: The hafnium controversy ) have been proposed as possible triggers for conventional thermonuclear reactions. Antimatter , which consists of particles resembling ordinary matter particles in most of their properties but having opposite electric charge , has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there
5650-614: The head of government or head of state . Despite controls and regulations governing nuclear weapons, there is an inherent danger of "accidents, mistakes, false alarms, blackmail, theft, and sabotage". In the late 1940s, lack of mutual trust prevented the United States and the Soviet Union from making progress on arms control agreements. The Russell–Einstein Manifesto was issued in London on July 9, 1955, by Bertrand Russell in
5763-436: The tropopause into the stratosphere , where the calm non-turbulent winds permit the debris to travel great distances from the burst, eventually settling and unpredictably contaminating areas far removed from the target of the explosion. There are other types of nuclear weapons as well. For example, a boosted fission weapon is a fission bomb that increases its explosive yield through a small number of fusion reactions, but it
SECTION 50
#17328023037665876-537: The "implosion" method, is more sophisticated and more efficient (smaller, less massive, and requiring less of the expensive fissile fuel) than the former. A major challenge in all nuclear weapon designs is to ensure that a significant fraction of the fuel is consumed before the weapon destroys itself. The amount of energy released by fission bombs can range from the equivalent of just under a ton to upwards of 500,000 tons (500 kilotons ) of TNT (4.2 to 2.1 × 10 GJ). All fission reactions generate fission products ,
5989-586: The 1980s (though not deployed in Europe) for use as tactical payloads for US Army artillery shells (200 mm W79 and 155 mm W82 ) and short range missile forces. Soviet authorities announced similar intentions for neutron warhead deployment in Europe; indeed, they claimed to have originally invented the neutron bomb, but their deployment on USSR tactical nuclear forces is unverifiable. A type of nuclear explosive most suitable for use by ground special forces
6102-881: The Americans as the Republic-Ford JB-2 cruise missile. Immediately after the war, the United States Air Force had 21 different guided missile projects, including would-be cruise missiles. All but four were cancelled by 1948: the Air Materiel Command Banshee, the SM-62 Snark , the SM-64 Navaho , and the MGM-1 Matador. The Banshee design was similar to Operation Aphrodite ; like Aphrodite, it failed, and
6215-612: The BGM-109 Tomahawk missile model has become a significant part of the United States naval arsenal. It gives ships and submarines a somewhat accurate, long-range, conventional land attack weapon. Each costs about US$ 1.99 million. Both the Tomahawk and the AGM-86 were used extensively during Operation Desert Storm . On 7 April 2017, during the Syrian Civil War , U.S. warships fired more than 50 cruise missiles into
6328-574: The Brahmos: ship/land-launched, air-launched, and sub-launched. The ship/land-launched version was operational as of late 2007. The Brahmos have the capability to attack targets on land. Russia also continues to operate other cruise missiles: the SS-N-12 Sandbox , SS-N-19 Shipwreck , SS-N-22 Sunburn and SS-N-25 Switchblade . Germany and Spain operate the Taurus missile while Pakistan has made
6441-603: The British 1909 film The Airship Destroyer in which flying torpedoes controlled wirelessly are used to bring down airships bombing London . In 1916, the American aviator Lawrence Sperry built and patented an "aerial torpedo", the Hewitt-Sperry Automatic Airplane , a small biplane carrying a TNT charge, a Sperry autopilot and barometric altitude control. Inspired by the experiments,
6554-425: The Cold War, policy and military theorists considered the sorts of policies that might prevent a nuclear attack, and they developed game theory models that could lead to stable deterrence conditions. Different forms of nuclear weapons delivery (see above) allow for different types of nuclear strategies. The goals of any strategy are generally to make it difficult for an enemy to launch a pre-emptive strike against
6667-598: The GPS/GLONASS/BeiDou/Galileo-based navigation is useful in a conflict with a technologically unsophisticated adversary. On the other hand, to be ready for a conflict with a technologically advanced adversary, one needs missiles equipped with TAINS and DSMAC. The cruise missiles that employ a TERCOM system include: Cruise missile A cruise missile is an unmanned self-propelled guided vehicle that sustains flight through aerodynamic lift for most of its flight path and whose primary mission
6780-494: The Joint Chiefs of Staffs website Publication, "Integration of nuclear weapons employment with conventional and special operations forces is essential to the success of any mission or operation." Because they are weapons of mass destruction, the proliferation and possible use of nuclear weapons are important issues in international relations and diplomacy. In most countries, the use of nuclear force can only be authorized by
6893-503: The Nuclear Age (1961) that mere possession of a nuclear arsenal was enough to ensure deterrence, and thus concluded that the spread of nuclear weapons could increase international stability . Some prominent neo-realist scholars, such as Kenneth Waltz and John Mearsheimer , have argued, along the lines of Gallois, that some forms of nuclear proliferation would decrease the likelihood of total war , especially in troubled regions of
SECTION 60
#17328023037667006-672: The RN in 1999, during the Kosovo War (the United States fired cruise missiles in 1991). The Royal Air Force uses the Storm Shadow cruise missile on its Typhoon and previously its Tornado GR4 aircraft. It is also used by France, where it is known as SCALP EG, and carried by the Armée de l'Air 's Mirage 2000 and Rafale aircraft. India and Russia have jointly developed the supersonic cruise missile BrahMos . There are three versions of
7119-488: The Soviet Union began to work on air-launched cruise missiles as well ( ALCM ). These ACLM missiles were typically delivered via bombers designated as "Blinders" or "Backfire". The missiles in this configuration were called the AS-1, and AS-2 with eventual new variants with more development time. The main purpose of Soviet-based cruise missiles was to have defense and offensive mechanisms against enemy ships; in other words, most of
7232-407: The Soviet Union was working on nearly ten different types of cruise missiles. However, due to resources, most of the initial types of cruise missiles developed by the Soviet Union were Sea-Launched Cruise Missiles or Submarine-Launched Cruise Missiles ( SLCMs ). The SS-N-1 cruise missile was developed to have different configurations to be fired from a submarine or a ship. However, as time progressed,
7345-486: The Soviet cruise missiles were anti-ship missiles. In the 1980s the Soviet Union had developed an arsenal of cruise missiles nearing 600 platforms which consisted of land, sea, and air delivery systems. The United States has deployed nine nuclear cruise missiles at one time or another. Currently, cruise missiles are among the most expensive of single-use weapons, up to several million dollars apiece. One consequence of this
7458-684: The Tu-95, 12 for the Tu-160, and 4 for the Tu-22M. A stealth version of the missile, the Kh-101 is in development. It has similar qualities as the Kh-55, except that its range has been extended to 5,000 km, is equipped with a 1,000 kg conventional warhead, and has stealth features which reduce its probability of intercept. After the collapse of the Soviet Union, the most recent cruise missile developed
7571-664: The USAAF detonated a plutonium implosion-type fission bomb nicknamed " Fat Man " over the Japanese city of Nagasaki . These bombings caused injuries that resulted in the deaths of approximately 200,000 civilians and military personnel . The ethics of these bombings and their role in Japan's surrender are to this day, still subjects of debate . Since the atomic bombings of Hiroshima and Nagasaki , nuclear weapons have been detonated over 2,000 times for testing and demonstration. Only
7684-777: The USAF AIR-2 Genie , the AIM-26 Falcon and US Army Nike Hercules . Missile interceptors such as the Sprint and the Spartan also used small nuclear warheads (optimized to produce neutron or X-ray flux) but were for use against enemy strategic warheads. Other small, or tactical, nuclear weapons were deployed by naval forces for use primarily as antisubmarine weapons. These included nuclear depth bombs or nuclear armed torpedoes. Nuclear mines for use on land or at sea are also possibilities. The system used to deliver
7797-527: The United States against the Japanese cities of Hiroshima and Nagasaki in 1945 during World War II . Nuclear weapons have only twice been used in warfare, both times by the United States against Japan at the end of World War II . On August 6, 1945, the United States Army Air Forces (USAAF) detonated a uranium gun-type fission bomb nicknamed " Little Boy " over the Japanese city of Hiroshima ; three days later, on August 9,
7910-567: The United States Navy submarine missile project was the SSM-N-8 Regulus missile, based upon the V-1 but powered by an Allison J33 jet engine. The Regulus entered service but was phased out with the advent of submarine launched ballistic missiles that did not require the submarine to surface in order to launch the missile and guide it to its target. The United States Air Force's first operational surface-to-surface missile
8023-526: The United States. Small, two-man portable tactical weapons (somewhat misleadingly referred to as suitcase bombs ), such as the Special Atomic Demolition Munition , have been developed, although the difficulty of combining sufficient yield with portability limits their military utility. Nuclear warfare strategy is a set of policies that deal with preventing or fighting a nuclear war. The policy of trying to prevent an attack by
8136-415: The availability of global digital elevation maps , have reduced this problem, as TERCOM data is no longer limited to small patches, and the availability of side-looking radar allows much larger areas of landscape contour data to be acquired for comparison with the stored contour data. DSMAC was an early form of AI which could guide missiles in real time by using camera inputs to determine location. DSMAC
8249-411: The buffer is then compared with the values in the map, looking for areas where the changes in altitude are identical. This produces a location and direction. The guidance system can then use this information to correct the flight path of the missile. During the cruise portion of the flight to the target, the accuracy of the system has to be enough only to avoid terrain features. This allows the maps to be
8362-485: The chance of a successful missile defense . Today, missiles are most common among systems designed for delivery of nuclear weapons. Making a warhead small enough to fit onto a missile, though, can be difficult. Tactical weapons have involved the most variety of delivery types, including not only gravity bombs and missiles but also artillery shells, land mines , and nuclear depth charges and torpedoes for anti-submarine warfare . An atomic mortar has been tested by
8475-612: The complexity of the live imaging systems has been greatly reduced through the introduction of solid-state technologies like CCDs . The combination of these technologies produced the digitized scene-mapping area correlator (DSMAC) . DSMAC systems are often combined with TERCOM as a terminal guidance system, allowing point attack with conventional warheads. MGM-31 Pershing II , SS-12 Scaleboard Temp-SM and OTR-23 Oka used an active radar homing version of DSMAC (digitized correlator unit DCU), which compared radar topographic maps taken by satellites or aircraft with information received from
8588-694: The concept was proven sound and the 500-megawatt (670,000 hp) engine finished a successful test run in 1961, no airworthy device was ever completed. The project was finally abandoned in favor of ICBM development. While ballistic missiles were the preferred weapons for land targets, heavy nuclear and conventional weapon tipped cruise missiles were seen by the USSR as a primary weapon to destroy United States naval carrier battle groups . Large submarines (for example, Echo and Oscar classes) were developed to carry these weapons and shadow United States battle groups at sea, and large bombers (for example, Backfire , Bear , and Blackjack models) were equipped with
8701-435: The creation of nuclear fallout than fission reactions, but because all thermonuclear weapons contain at least one fission stage, and many high-yield thermonuclear devices have a final fission stage, thermonuclear weapons can generate at least as much nuclear fallout as fission-only weapons. Furthermore, high yield thermonuclear explosions (most dangerously ground bursts) have the force to lift radioactive debris upwards past
8814-541: The data were not identical and would change by season and from other unexpected changes and visual effects, the DSMAC system within the missiles had to be able to compare and determine if maps were the same, regardless of changes. It could successfully filter out differences in maps and use the remaining map data to determine its location. Due to its ability to visually identify targets instead of simply attacking estimated coordinates, its accuracy exceeded GPS guided weapons during
8927-455: The decision process. The prospect of mutually assured destruction might not deter an enemy who expects to die in the confrontation. Further, if the initial act is from a stateless terrorist instead of a sovereign nation, there might not be a nation or specific target to retaliate against. It has been argued, especially after the September 11, 2001, attacks , that this complication calls for
9040-469: The energy of a fission bomb to compress and heat fusion fuel. In the Teller-Ulam design , which accounts for all multi-megaton yield hydrogen bombs, this is accomplished by placing a fission bomb and fusion fuel ( tritium , deuterium , or lithium deuteride ) in proximity within a special, radiation-reflecting container. When the fission bomb is detonated, gamma rays and X-rays emitted first compress
9153-417: The first Gulf War. The massive improvements in memory and processing power from the 1950s, when these scene comparison systems were first invented, to the 1980s, when TERCOM was widely deployed, changed the nature of the problem considerably. Modern systems can store numerous images of a target as seen from different directions, and often the imagery can be calculated using image synthesis techniques. Likewise,
9266-413: The first operational cruise missiles. The V-1 , often called a flying bomb , contained a gyroscope guidance system and was propelled by a simple pulsejet engine, the sound of which gave it the nickname of "buzz bomb" or "doodlebug". Accuracy was sufficient only for use against very large targets (the general area of a city), while the range of 250 km (160 mi) was significantly lower than that of
9379-455: The fission bomb core. The external method of boosting enabled the USSR to field the first partially thermonuclear weapons, but it is now obsolete because it demands a spherical bomb geometry, which was adequate during the 1950s arms race when bomber aircraft were the only available delivery vehicles. The detonation of any nuclear weapon is accompanied by a blast of neutron radiation . Surrounding
9492-420: The fusion fuel, then heat it to thermonuclear temperatures. The ensuing fusion reaction creates enormous numbers of high-speed neutrons , which can then induce fission in materials not normally prone to it, such as depleted uranium . Each of these components is known as a "stage", with the fission bomb as the "primary" and the fusion capsule as the "secondary". In large, megaton-range hydrogen bombs, about half of
9605-535: The globe, would make all life on the planet extinct. In connection with the Strategic Defense Initiative , research into the nuclear pumped laser was conducted under the DOD program Project Excalibur but this did not result in a working weapon. The concept involves the tapping of the energy of an exploding nuclear bomb to power a single-shot laser that is directed at a distant target. During
9718-409: The important measure in the data is the change in altitude from square to square. The missile's radar altimeter feeds measurements into a small buffer that periodically "gates" the measurements over a period of time and averages them out to produce a single measurement. The series of such numbers held in the buffer produce a strip of measurements similar to those held in the maps. The series of changes in
9831-412: The length of the flight; an inertial system slowly drifts after a "fix", and its accuracy is lower for longer distances. TERCOM systems receive constant fixes during the flight, and thus do not have any drift. Their absolute accuracy, however, is based on the accuracy of the radar mapping information, which is typically in the range of meters, and the ability of the processor to compare the altimeter data to
9944-496: The majority of their energy from nuclear fission reactions alone, and those that use fission reactions to begin nuclear fusion reactions that produce a large amount of the total energy output. All existing nuclear weapons derive some of their explosive energy from nuclear fission reactions. Weapons whose explosive output is exclusively from fission reactions are commonly referred to as atomic bombs or atom bombs (abbreviated as A-bombs ). This has long been noted as something of
10057-459: The map quickly enough as the resolution increases. This generally limits first generation TERCOM systems to targets on the order of hundreds of meters, limiting them to the use of nuclear warheads . Use of conventional warheads requires further accuracy, which in turn demands additional terminal guidance systems. The limited data storage and computing systems of the time meant that the entire route had to be pre-planned, including its launch point. If
10170-474: The maps required the route to be flown by an aircraft. A radar on the aircraft was set to a fixed angle and made horizontal scans of the land in front. The timing of the return signal indicated the range to the landform and produced an amplitude modulated (AM) signal. This was sent to a light source and recorded on 35 mm film , advancing the film and taking a picture at indicated times. The film could then be processed and copied for use in multiple missiles. In
10283-407: The midst of the Cold War. It highlighted the dangers posed by nuclear weapons and called for world leaders to seek peaceful resolutions to international conflict. The signatories included eleven pre-eminent intellectuals and scientists, including Albert Einstein , who signed it just days before his death on April 18, 1955. A few days after the release, philanthropist Cyrus S. Eaton offered to sponsor
10396-545: The military establishment have questioned the usefulness of such weapons in the current military climate. According to an advisory opinion issued by the International Court of Justice in 1996, the use of (or threat of use of) such weapons would generally be contrary to the rules of international law applicable in armed conflict, but the court did not reach an opinion as to whether or not the threat or use would be lawful in specific extreme circumstances such as if
10509-612: The missile was launched from an unexpected location or flew too far off-course, it would never fly over the features included in the maps, and would become lost. The INS system can help, allowing it to fly to the general area of the first patch, but gross errors simply cannot be corrected. This made early TERCOM-based systems much less flexible than more modern systems like GPS , which can be set to attack any location from any location, and do not require pre-recorded information which means they can be given their targets immediately before launch. Improvements in computing and memory, combined with
10622-409: The missile, a similar radar produced the same signal. A second system scanned the frames of film against a photocell and produced a similar AM signal. By comparing the points along the scan where the brightness changed rapidly, which could be picked out easily by simple electronics, the system could compare the left-right path of the missile compared with that of the pathfinding aircraft. Errors between
10735-408: The missiles before they land or implementing civil defense measures using early-warning systems to evacuate citizens to safe areas before an attack. Weapons designed to threaten large populations or to deter attacks are known as strategic weapons . Nuclear weapons for use on a battlefield in military situations are called tactical weapons . Critics of nuclear war strategy often suggest that
10848-418: The onboard active radar regarding target topography, for terminal guidance. Yet another way to navigate a cruise missile is by using a satellite positioning system as they are precise and cheap. Unfortunately, they rely on satellites. If the satellites are interfered with (e.g. destroyed) or if the satellite signal is interfered with (e.g. jammed), the satellite navigation system becomes inoperable. Therefore,
10961-428: The remains of the split atomic nuclei. Many fission products are either highly radioactive (but short-lived) or moderately radioactive (but long-lived), and as such, they are a serious form of radioactive contamination . Fission products are the principal radioactive component of nuclear fallout . Another source of radioactivity is the burst of free neutrons produced by the weapon. When they collide with other nuclei in
11074-587: The same argument applies to other types of UAVs : they are cheaper than human pilots when total training and infrastructure costs are taken into account, not to mention the risk of loss of personnel. As demonstrated in Libya in 2011 and prior conflicts, cruise missiles are much more difficult to detect and intercept than other aerial assets (reduced radar cross-section, infrared and visual signature due to smaller size), suiting them to attacks against static air defense systems. Nuclear warhead A nuclear weapon
11187-456: The same size and weight and fly at similar speeds to the above category. Guidance systems vary. Examples: These are subsonic missiles that weigh around 500 kilograms (1,102 lb) and have a range of up to 300 km (190 mi). Examples: The most common mission for cruise missiles is to attack relatively high-value targets such as ships, command bunkers, bridges and dams. Modern guidance systems permit accurate attacks. As of 2001 ,
11300-402: The surrounding material, the neutrons transmute those nuclei into other isotopes, altering their stability and making them radioactive. The most commonly used fissile materials for nuclear weapons applications have been uranium-235 and plutonium-239 . Less commonly used has been uranium-233 . Neptunium-237 and some isotopes of americium may be usable for nuclear explosives as well, but it
11413-498: The survival of the state were at stake. Another deterrence position is that nuclear proliferation can be desirable. In this case, it is argued that, unlike conventional weapons, nuclear weapons deter all-out war between states, and they succeeded in doing this during the Cold War between the U.S. and the Soviet Union . In the late 1950s and early 1960s, Gen. Pierre Marie Gallois of France, an adviser to Charles de Gaulle , argued in books like The Balance of Terror: Strategy for
11526-404: The two signals drove corrections in the autopilot needed to bring the missile back onto its programmed flight path. Modern TERCOM systems use a different concept, based on the altitude of the ground over which missile flies and measure by radar altimeter of the missile and comparing that to measurements of prerecorded terrain altitude maps stored in missile avionics memory. TERCOM "maps" consist of
11639-446: The weapon system and difficult to defend against the delivery of the weapon during a potential conflict. This can mean keeping weapon locations hidden, such as deploying them on submarines or land mobile transporter erector launchers whose locations are difficult to track, or it can mean protecting weapons by burying them in hardened missile silo bunkers. Other components of nuclear strategies included using missile defenses to destroy
11752-519: The weapons in their air-launched cruise missile (ALCM) configuration. Cruise missiles can be categorized by payload/warhead size, speed, range, and launch platform. Often variants of the same missile are produced for different launch platforms (for instance, air- and submarine-launched versions). Guidance systems can vary across missiles. Some missiles can be fitted with any of a variety of navigation systems ( Inertial navigation , TERCOM , or satellite navigation ). Larger cruise missiles can carry either
11865-631: The world where there exists a single nuclear-weapon state. Aside from the public opinion that opposes proliferation in any form, there are two schools of thought on the matter: those, like Mearsheimer, who favored selective proliferation, and Waltz, who was somewhat more non- interventionist . Interest in proliferation and the stability-instability paradox that it generates continues to this day, with ongoing debate about indigenous Japanese and South Korean nuclear deterrent against North Korea . The threat of potentially suicidal terrorists possessing nuclear weapons (a form of nuclear terrorism ) complicates
11978-624: The yield comes from the final fissioning of depleted uranium. Virtually all thermonuclear weapons deployed today use the "two-stage" design described to the right, but it is possible to add additional fusion stages—each stage igniting a larger amount of fusion fuel in the next stage. This technique can be used to construct thermonuclear weapons of arbitrarily large yield. This is in contrast to fission bombs, which are limited in their explosive power due to criticality danger (premature nuclear chain reaction caused by too-large amounts of pre-assembled fissile fuel). The largest nuclear weapon ever detonated,
12091-599: Was adapted to launch from trucks and ships and adopted by the USAF and Navy. The truck-launched versions, and also the Pershing II and SS-20 Intermediate Range Ballistic Missiles, were later destroyed under the bilateral INF (Intermediate-Range Nuclear Forces) treaty with the USSR. The British Royal Navy (RN) also operates cruise missiles, specifically the U.S.-made Tomahawk, used by the RN's nuclear submarine fleet. UK conventional warhead versions were first fired in combat by
12204-632: Was canceled in April 1949. Concurrently, the US Navy's Operation Bumblebee , was conducted at Topsail Island , North Carolina , from c. 1 June 1946, to 28 July 1948. Bumblebee produced proof-of-concept technologies that influenced the US military's other missile projects. During the Cold War , both the United States and the Soviet Union experimented further with the concept, of deploying early cruise missiles from land, submarines, and aircraft. The main outcome of
12317-530: Was in response to the crisis posed by the Soviet attack on Hungary which suppressed the Hungarian Revolution of 1956 . Between 1957 and 1961 the United States followed an ambitious and well-funded program to develop a nuclear-powered cruise missile, Supersonic Low Altitude Missile (SLAM). It was designed to fly below the enemy's radar at speeds above Mach 3 and carry hydrogen bombs that it would drop along its path over enemy territory. Although
12430-727: Was the Kalibr missile which entered production in the early 1990s and was officially inducted into the Russian arsenal in 1994. However, it only saw its combat debut on 7 October 2015, in Syria as a part of the Russian military campaign in Syria . The missile has been used 14 more times in combat operations in Syria since its debut. In the late 1950s and early 1960s, the Soviet Union was attempting to develop cruise missiles. In this short time frame,
12543-744: Was the Special Atomic Demolition Munition , or SADM, sometimes popularly known as a suitcase nuke . This is a nuclear bomb that is man-portable, or at least truck-portable, and though of a relatively small yield (one or two kilotons) is sufficient to destroy important tactical targets such as bridges, dams, tunnels, important military or commercial installations, etc. either behind enemy lines or pre-emptively on friendly territory soon to be overtaken by invading enemy forces. These weapons require plutonium fuel and are particularly "dirty". They also demand especially stringent security precautions in their storage and deployment. Small "tactical" nuclear weapons were deployed for use as antiaircraft weapons. Examples include
12656-562: Was the winged, mobile, nuclear-capable MGM-1 Matador , also similar in concept to the V-1. Deployment overseas began in 1954, first to West Germany and later to the Republic of China and South Korea. On 7 November 1956, the U.S. Air Force deployed Matador units in West Germany, whose missiles were capable of striking targets in the Warsaw Pact , from their fixed day-to-day sites to unannounced dispersed launch locations. This alert
12769-587: Was used in Tomahawk Block II onward, and proved itself successfully during the first Gulf War. The system worked by comparing camera inputs during flight to maps computed from spy satellite images. The DSMAC AI system computed contrast maps of images, which it then combined in a buffer and then averaged. It then compared the averages to stored maps computed beforehand by a large mainframe computer , which converted spy satellite pictures to simulate what routes and targets would look like from low level. Since
#765234