Misplaced Pages

Busway

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#857142

96-427: Busway may refer to: Transport technology [ edit ] Bus rapid transit , bus systems including some elements of light railways or metro systems Guided busway , concrete tracks exclusively for modified buses Bus lane , a lane reserved for buses and in some cases for taxis as well Transport systems [ edit ] Cambridgeshire Guided Busway in

192-487: A Dennis Dragon (#701) into a double-decker trolleybus, and it was tested on a 300-metre track in Wong Chuk Hang in that year. Hong Kong decided not to build a trolleybus system, and the testing of this prototype did not lead to any further production of vehicles. There are currently 300 cities or metropolitan areas where trolleybuses are operated, and more than 500 additional trolleybus systems have existed in

288-518: A busway or transitway , is a trolleybus , electric bus and public transport bus service system designed to have much more capacity , reliability , and other quality features than a conventional bus system. Typically, a BRT system includes roadways that are dedicated to buses , and gives priority to buses at intersections where buses may interact with other traffic; alongside design features to reduce delays caused by passengers boarding or leaving buses, or paying fares . BRT aims to combine

384-621: A "BHLS" (stands for Bus with a High Level of Service ). The term transitway was originated in 1981 with the opening of the OC Transpo transitway in Ottawa , Ontario , Canada. Critics have charged that the term "bus rapid transit" has sometimes been misapplied to systems that lack most or all the essential features which differentiate it from conventional bus services. The term " bus rapid transit creep " has been used to describe severely degraded levels of bus service which fall far short of

480-457: A "straight through" or "turnout" position; it normally remains in the "straight through" position unless it has been triggered, and reverts to it after a few seconds or after the pole shoe passes through and strikes a release lever (in Boston, the resting or "default" position is the "leftmost" position). Triggering is typically accomplished by a pair of contacts, one on each wire close to and before

576-676: A 31-line system operated with a fleet of over 1,250 trolleybuses. Trolleybuses have been long encouraged in North Korea with the newest city to have a network being Manpo in December 2019. Since the year 2022, the city of Prague is constructing a new trolleybus system. Meanwhile, in 2023, plans for a trolleybus line in Berlin were scrapped in favour of a solution with battery-powered vehicles. Modern design vehicles Note: As there are numerous variations of tram and light-rail technology,

672-582: A BRT system to 35,000 passengers per hour. The single-lane roads of Istanbul Metrobus had been frequently blocked by Phileas buses breaking down, causing delays for all the buses in a single direction. After focusing on Mercedes-Benz buses, capacity increased to 45,000 pph. Light rail, by comparison, has reported passenger capacities between 3,500 pph (mainly street running) to 19,000 pph (fully grade-separated ). Trolleybus A trolleybus (also known as trolley bus , trolley coach , trackless trolley , trackless tram  – in

768-703: A choice later also made by Lucerne . Outside Europe, 14 vehicles built by, and for, the Shanghai trolleybus system in mid-1999 were the first reported low-floor trolleybuses in Southeast Asia. Wellington, New Zealand , took delivery of its first low-floor trolleybus in March 2003, and by the end of 2009 had renewed its entire fleet with such vehicles. Unlike Europe, where low floor means "100%" low floor from front to back, most "low floor" buses on other continents are actually only low-entry or part-low floor. In

864-421: A defunct English bus company Busways , an Australian bus company Similar terms [ edit ] Bus duct , a sheet metal duct containing either copper or aluminium busbars (in electrical distribution system) Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Busway . If an internal link led you here, you may wish to change

960-552: A few years old and replace them with low-floor trolleybuses. Responses varied, with some systems keeping their high-floor fleets, and others retiring them early but, in many instances, selling them second-hand for continued use in countries where there was a demand for low-cost second-hand trolleybuses, in particular in Romania and Bulgaria. The Lausanne system dealt with this dilemma in the 1990s by purchasing new low-floor passenger trailers to be towed by its high-floor trolleybuses,

1056-428: A low-noise, low-emissions "hush mode" (in which the diesel engine operates but does not exceed idle speed ) when underground. The need to provide electric power in underground environments brings the capital and maintenance costs of such routes closer to those of light rail, and raises the question of building or eventually converting to light rail. In Seattle, the downtown transit tunnel was retrofitted for conversion to

SECTION 10

#1732772370858

1152-449: A result, less forced ventilation will be required in tunnels to achieve the same air quality. Another alternative is to use electric propulsion, which Seattle 's Metro Bus Tunnel and Boston 's Silver Line Phase II implemented. In Seattle, dual-mode (electric/diesel electric) buses manufactured by Breda were used until 2004, with the center axle driven by electric motors obtaining power from trolley wires through trolley poles in

1248-455: A shared hybrid-bus and light-rail facility in preparation for Seattle's Central Link Light Rail line, which opened in July 2009. In March 2019, expansion of the light rail in the tunnel moved busses back to surface streets. Bi-articulated battery electric buses cause no problems in tunnels anymore but provide BRT capacity. A BRT system can be measured by a number of factors. The BRT Standard

1344-419: A static map, featuring services like trip planning, live arrival and departure times, up-to-date line schedules, local station maps, service alerts, and advisories that may affect one's current trip. Transit and Moovit are examples of apps that are available in many cities around the world. Some operators of bus rapid transit systems have developed their own apps, like Transmilenio. These apps even include all

1440-453: A switch while braking or accelerating through a switch without activating it. One variation of the toggle switch will simulate accelerating by causing a larger power draw (through a resistance grid), but will not simulate coasting and prevent activation of the switch by cutting the power. A Selectric switch has a similar design, but the contacts on the wires are skewed, often at a 45-degree angle, rather than being lined up. This skew means that

1536-944: A system of roads only for buses in Runcorn , England South Miami-Dade Busway in Miami, United States In Pittsburgh, United States West Busway South Busway Martin Luther King Jr. East Busway In Los Angeles, United States El Monte Busway Harbor Transitway Ottawa Rapid Transit in Ottawa, Canada Metroway operates a portion of its route on a dedicated busway in Northern Virginia, United States TransJakarta in Jakarta, Indonesia, some people also called it as Busway Transport companies [ edit ] Busways Travel Services ,

1632-480: A total daily ridership), in the developing world this capacity constraint (or rumor of a capacity constraint) was a significant argument in favor of heavy rail metro investments in some venues. When TransMilenio opened in 2000, it changed the paradigm by giving buses a passing lane at each station stop and introducing express services within the BRT infrastructure. These innovations increased the maximum achieved capacity of

1728-401: A transmitter, often attached to a trolley pole. The receiver is attached to the switch and causes it to trigger if the correct code is received. This has the advantage that the driver does not need to be accelerating the bus (as with a power-on/power-off switch) or trying to make a sharp turn (as with a Selectric switch). Trailing switches (where two sets of wires merge) do not require action by

1824-432: A trolleybus going straight through will not trigger the switch, but a trolleybus making a turn will have its poles match the contacts in a matching skew (with one pole shoe ahead of the other), which will trigger the switch regardless of power draw (accelerating versus coasting). For a Fahslabend switch, the trolleybus' turn indicator control (or a separate driver-controlled switch) causes a coded radio signal to be sent from

1920-701: A trolleybus to get around a route blockage or can reduce the amount (or complexity) of overhead wiring needed at operating garages (depots). This capability has become increasingly common in newer trolleybuses, particularly in China, North America and Europe, where the vast majority of new trolleybuses delivered since the 1990s are fitted with at least limited off-wire capability. These have gradually replaced older trolleybuses which lacked such capability. In Philadelphia , new trackless trolleys equipped with small hybrid diesel-electric power units for operating short distances off-wire were placed in service by SEPTA in 2008. This

2016-586: Is a risk of a dangerous gap between bus and platform , and is even greater due to the nature of bus operations. Kassel curbs or other methods may be used to ease quick and safe alignment of the BRT vehicle with a platform. A popular compromise is low-floor buses with a low step at the door, which can allow easy boarding at low-platform stops compatible with other buses. This intermediate design may be used with some low- or medium-capacity BRT systems. The MIO system in Santiago de Cali, Colombia, pioneered in 2009

SECTION 20

#1732772370858

2112-406: Is in motion under the overhead wires and then allows off-wire travel for significant distances, often in excess of 15 km. Such trolleybuses are called, among others, trolleybuses with In-Motion Charging, hybrid trolleybuses, battery trolleybuses and electric buses with dynamic charging. The main advantages of this technology over conventional battery electric buses are reduced cost and weight of

2208-532: Is installed some distance from the intersection to choose the wires over the left-turn lane, and another switch is mounted closer to or in the intersection to choose between straight through and a right turn (this would be the arrangement in countries such as the United States, where traffic directionality is right-handed; in left-handed traffic countries such as the United Kingdom and New Zealand,

2304-626: Is instead of the trolleys using a conventional diesel drive train or battery-only system for their off-wire movement. King County Metro in Seattle, Washington and the MBTA in Boston 's Silver Line have used dual-mode buses that run on electric power from overhead wires on a fixed right-of-way and on diesel power on city streets. Metro used special-order articulated Breda buses, introduced in 1990, and most were retired in 2005. A limited number of

2400-585: Is less complex than rail maintenance. Moreover, buses are more flexible than rail vehicles, because a bus route can be altered, either temporarily or permanently, to meet changing demand or contend with adverse road conditions with comparatively little investment of resources. The first use of a protected busway was the East Side Trolley Tunnel in Providence , Rhode Island . It was converted from trolley to bus use in 1948. However,

2496-616: Is most commonly supplied as 600- volt direct current , but there are exceptions. Currently, around 300 trolleybus systems are in operation, in cities and towns in 43 countries. Altogether, more than 800 trolleybus systems have existed, but not more than about 400 concurrently. The trolleybus dates back to 29 April 1882, when Dr. Ernst Werner Siemens demonstrated his " Elektromote " in a Berlin suburb. This experiment continued until 13 June 1882, after which there were few developments in Europe, although separate experiments were conducted in

2592-703: Is now the standard trolleybus current collection system. In the early days there were many other methods of current collection. The Cédès-Stoll (Mercédès-Électrique-Stoll) system was first operated near Dresden between 1902 and 1904, and 18 systems followed. The Lloyd-Köhler or Bremen system was tried out in Bremen with 5 further installations, and the Cantono Frigerio system was used in Italy. Throughout this period, trackless freight systems and electric canal boats were also built. Leeds and Bradford became

2688-497: Is operated electrically just as a tramcar without limitation of the range. It concept of trolleybus and ebus with Battery electric bus . IMC500 transfers energy from the infrastructure to the vehicle at a power of up to 500 kW. The e.g. 2 x 160 kW motors are supplied in parallel to the battery charging with e.g. 200 kW. With increasing diesel fuel costs and problems caused by particulate matter and NO x emissions in cities, trolleybuses can be an attractive alternative, either as

2784-839: Is the oldest operating system in the world. With a length of 86 km, route #52 of Crimean Trolleybus is the longest trolleybus line in the world. See also Trolleybus usage by country . Transit authorities in some cities have reduced or discontinued the use of trolleybuses in recent years, while others, wanting to add or expand use of zero-emission vehicles in an urban environment, have opened new systems or are planning new systems. For example, new systems opened in Lecce , Italy, in 2012; in Malatya , Turkey, in 2015; and in Marrakesh , Morocco, in 2017. Beijing and Shanghai have been expanding their respective systems, with Beijing expanding to

2880-459: Is today over 18.5 miles long. The OC Transpo BRT system in Ottawa , Canada, was introduced in 1983. The first element of its BRT system was dedicated bus lanes through the city centre, with platformed stops. The introduction of exclusive separate busways (termed 'Transitway') occurred in 1983. By 1996, all of the originally envisioned 31 km Transitway system was in operation; further expansions were opened in 2009, 2011, and 2014. As of 2019,

2976-570: The BRT Standard promoted by the Institute for Transportation and Development Policy (ITDP) and other organizations. Compared to other common transit modes such as light rail transit (LRT), bus rapid transit (BRT) service is attractive to transit authorities because it does not cost as much to establish and operate: no track needs to be laid, bus drivers typically require less training and less pay than rail operators, and bus maintenance

Busway - Misplaced Pages Continue

3072-776: The Boston system . Subsequently, the Vancouver system and the Philadelphia system have converted entirely to low-floor vehicles, and in 2013 the Seattle and Dayton systems both placed orders for their first low-floor trolleybuses. Outside São Paulo, almost all trolleybuses currently in service in Latin America are high-floor models built before 2000. However, in 2013, the first domestically manufactured low-floor trolleybuses were introduced in both Argentina and Mexico. With regard to non-passenger aspects of vehicle design,

3168-571: The Indonesian capital city . Bus rapid transit is a mode of mass rapid transit (MRT) and describes a high-capacity urban public-transit system with its own right of way , vehicles at short headways , platform-level boarding, and preticketing. The expression "BRT" is mainly used in the Americas and China; in India, it is called "BRTS" (BRT System); in Europe it is often called a "busway" or

3264-456: The La Spezia (Italy) system being the last one to do so, and several systems in other parts of the world have purchased low-floor vehicles. In the United States, some transit agencies had already begun to accommodate persons in wheelchairs by purchasing buses with wheelchair lifts , and early examples of fleets of lift-equipped trolleybuses included 109 AM General trolleybuses built for

3360-937: The MIO in Cali since November 2008, Metrolinea in Bucaramanga since December 2009, Megabús in Pereira since May 2009. This design is also used in Johannesburg 's Rea Vaya . The term "station" is more flexibly applied in North America and ranges from enclosed waiting areas ( Ottawa and Cleveland ) to large open-sided shelters ( Los Angeles and San Bernardino ). A unique and distinctive identity can contribute to BRT's attractiveness as an alternative to driving cars, (such as Viva, Max, TransMilenio, Metropolitano, Metronit, Select) marking stops and stations as well as

3456-454: The Seattle trolleybus system in 1979 and the retrofitting of lifts in 1983 to 64 Flyer E800s in the Dayton system 's fleet. The Americans with Disabilities Act of 1990 required that all new transit vehicles placed into service after 1 July 1993 be accessible to such passengers. Trolleybuses in other countries also began to introduce better access for the disabled in the 1990s, when

3552-633: The Soviet Union . Generally trolleybuses occupy a position in usage between street railways (trams) and motorbuses. Worldwide, around 300 cities or metropolitan areas on 5 continents are served by trolleybuses (further detail under Use and preservation , below). This mode of transport operates in large cities, such as Belgrade , Lyon , Pyongyang , São Paulo , Seattle , Sofia , St. Petersburg , and Zurich , as well as in smaller ones such as Dayton , Gdynia , Lausanne , Limoges , Modena , and Salzburg . As of 2020, Kyiv has, due to its history in

3648-435: The 15,000 to 25,000 range. Research of the Institute for Transportation and Development Policy (ITDP) shows a capacity ranking of MRT modes, based on reported performance of 14 light rail systems, 14 heavy rail systems (just 1-track + 3 2-track-systems "highest capacity") and 56 BRT systems. The study concludes, that BRT-"capacity on TransMilenio exceeds all but the highest capacity heavy rail systems, and it far exceeds

3744-529: The 1910s and 1920s  – or trolley ) is an electric bus that draws power from dual overhead wires (generally suspended from roadside posts) using spring-loaded trolley poles . Two wires , and two trolley poles, are required to complete the electrical circuit. This differs from a tram or streetcar, which normally uses the track as the return path, needing only one wire and one pole (or pantograph ). They are also distinct from other kinds of electric buses , which usually rely on batteries . Power

3840-650: The 1980s, systems such as Muni in San Francisco, TransLink in Vancouver, and Beijing , among others, have bought trolleybuses equipped with batteries to allow them to operate fairly long distances away from the wires. Supercapacitors can be also used to move buses short distances. Trolleybuses can optionally be equipped either with limited off-wire capability—a small diesel engine or battery pack—for auxiliary or emergency use only, or full dual-mode capability . A simple auxiliary power unit can allow

3936-467: The Americas, the first low-floor trolleybus was a Busscar vehicle supplied to the São Paulo EMTU system in 2001. In North America, wheelchair lifts were again chosen for disabled access in new trolleybuses delivered to San Francisco in 1992–94, to Dayton in 1996–1999, and to Seattle in 2001–2002, but the first low-floor trolleybus was built in 2003, with the first of 28 Neoplan vehicles for

Busway - Misplaced Pages Continue

4032-566: The Breda dual-mode buses had their diesel engines removed, and operated exclusively as trolleybuses until 2016. Since 2004, the MBTA has used dual-mode buses on its Silver Line (Waterfront) route. The last of these were be replaced by diesel hybrid and battery-electric buses in June 2023. IMC (In Motion Charging) trolleybuses are equipped with a light-weight battery, the size of which is adapted to

4128-787: The Italian builders Alfa Romeo (2,044) and Fiat (approx. 1,700). The largest former trolleybus manufacture is Trolza (formerly Uritsky, or ZiU) since 1951, until they declared their bankruptcy in 2017, building over 65000 trolleybuses. Also, Canadian Car and Foundry built 1,114 trolleybuses based on designs by Brill. As of the 2010s, at least 30 trolleybus manufacturers exist. They include companies that have been building trolleybuses for several decades, such as Škoda since 1936 and New Flyer , among others, along with several younger companies. Current trolleybus manufacturers in western and central Europe include Solaris , Van Hool , and Hess , among others. In Russia ZiU/Trolza has historically been

4224-609: The US, some systems subscribed to the all-four concept of using buses, trolleybuses, streetcars ( trams, trolleys) , and rapid transit subway and/or elevated lines (metros), as appropriate, for routes ranging from the lightly used to the heaviest trunk line. Buses and trolleybuses in particular were seen as entry systems that could later be upgraded to rail as appropriate. In a similar fashion, many cities in Britain originally viewed trolleybus routes as extensions to tram (streetcar) routes where

4320-813: The United Kingdom In Brisbane, Australia: Eastern Busway, Brisbane Northern Busway, Brisbane South-East Busway, Brisbane The Luton to Dunstable Busway in the United Kingdom Nantes Busway in France Trans-Val-de-Marne in southern suburb of Paris, France Guided busway in Essen In Auckland, New Zealand: Northern Busway, Auckland Eastern Busway, Auckland O-Bahn Busway in Adelaide, Australia

4416-713: The United Kingdom, but there were a few, usually solitary, instances of such trolleybuses being built in other countries, including in Germany by Henschel (for Hamburg); in Italy, by Lancia (for Porto, Portugal); in Russia, by the Yaroslavl motor plant (for Moscow) and in Spain, by Maquitrans (for Barcelona). British manufacturers of double-deck trolleybuses included AEC , BUT , Crossley , Guy , Leyland , Karrier , Sunbeam and others. In 2001, Citybus (Hong Kong) converted

4512-511: The United States (and in Britain, as noted above) came into existence when a trolley or tram route did not have sufficient ridership to warrant track maintenance or reconstruction. In a similar manner, a proposed tram scheme in Leeds, United Kingdom, was changed to a trolleybus scheme to cut costs. Trolleybuses are uncommon today in North America, but their use is widespread in Europe and Russia. They remain common in many countries which were part of

4608-598: The United States, BRT began in 1977, with Pittsburgh's South Busway , operating on 4.3 miles (6.9 km) of exclusive lanes. Its success led to the Martin Luther King Jr. East Busway in 1983, a fuller BRT deployment including a dedicated busway of 9.1 miles (14.6 km), traffic signal preemption , and peak service headway as low as two minutes. After the opening of the West Busway , 5.1 miles (8.2 km) in length in 2000, Pittsburgh's Busway system

4704-501: The United States. In 1899, another vehicle which could run either on or off rails was demonstrated in Berlin. The next development was when Louis Lombard-Gérin operated an experimental line at the Paris Exhibition of 1900 after four years of trials, with a circular route around Lake Daumesnil that carried passengers. Routes followed in six places including Eberswalde and Fontainebleau. Max Schiemann on 10 July 1901 opened

4800-623: The battery due to its smaller size, no delays for charging at end stops as the vehicle charges while in motion and reduced need for dedicated charging stations that take up public space. This new development allows the extension of trolleybus routes or the electrification of bus routes without the need to build overhead wires along the whole length of the route. Cities that utilize such trolleybuses include Beijing , Ostrava , Shanghai , Mexico City , Saint Petersburg , and Bergen . The new trolleybus systems in Marrakesh , Baoding and Prague are based exclusively on battery trolleybuses. In 2020,

4896-419: The buses. Large cities usually have big bus networks. A map showing all bus lines might be incomprehensible, and cause people to wait for low-frequency buses that may not even be running at the time they are needed. By identifying the main bus lines having high-frequency service, with a special brand and separate maps, it is easier to understand the entire network. Public transit apps are more convenient than

SECTION 50

#1732772370858

4992-786: The capacity and speed of a light rail transit (LRT) or mass rapid transit (MRT) system with the flexibility, lower cost and simplicity of a bus system. The world's first BRT system was the Runcorn Busway in Runcorn New Town, England, which entered service in 1971. As of March 2018 , a total of 166 cities in six continents have implemented BRT systems, accounting for 4,906 km (3,048 mi) of BRT lanes and about 32.2 million passengers every day. The majority of these are in Latin America , where about 19.6 million passengers ride daily, and which has

5088-601: The center of major arterial roads, in 1980 the Curitiba system added a feeder bus network and inter-zone connections, and in 1992 introduced off-board fare collection, enclosed stations, and platform-level boarding. Other systems made further innovations, including platooning (three buses entering and leaving bus stops and traffic signals at once) in Porto Alegre , and passing lanes and express service in São Paulo . In

5184-605: The central part of the Transitway has been converted to light rail transit , due to the downtown section being operated beyond its designed capacity. In 1995, Quito , Ecuador, opened MetrobusQ its first BRT trolleybuses in Quito , using articulated trolleybuses. The TransMilenio in Bogotá , Colombia, opening in 2000, was the first BRT system to combine the best elements of Curitiba's BRT with other BRT advances, and achieved

5280-492: The city of Berlin , Germany announced plans to build a new trolleybus system with 15 routes and 190 battery trolleybuses. However, in early 2023 it was announced that the planned lines would use battery powered electric buses instead. Introducing new flexible, high-capacity public transport of in motion charging (IMC) trolleybuses are electric buses that can charge dynamically via an overhead contact network and can run on batteries for up to half of their route. Because an IMC bus

5376-584: The concept while sketching on the back of an envelope. The town was designed around the transport system, with most residents no more than five minutes walking distance, or 500 yards (460 m), from the Busway. The second BRT system in the world was the Rede Integrada de Transporte (RIT, integrated transportation network ), implemented in Curitiba , Brazil, in 1974. The Rede Integrada de Transporte

5472-490: The cost of constructing or restoring track could not be justified at the time, though this attitude changed markedly (to viewing them as outright replacements for tram routes) in the years after 1918. Trackless trolleys were the dominant form of new post-World War I electric traction , with extensive systems in among others, Los Angeles, Chicago , Boston , Rhode Island , and Atlanta ; San Francisco and Philadelphia still maintain an "all-four" fleet. Some trolleybus lines in

5568-543: The countries where they have operated. The United Kingdom has the largest number of preserved trolleybuses with more than 110, while the United States has around 70. Most preserved vehicles are on static display only, but a few museums are equipped with a trolleybus line, allowing trolleybuses to operate for visitors. Museums with operational trolleybus routes include three in the UK – the Trolleybus Museum at Sandtoft ,

5664-415: The disadvantages listed may be applicable only with a specific technology or design. With the re-introduction of hybrid designs, trolleybuses are no longer tied to overhead wires. The Public Service Company of New Jersey , with Yellow Coach , developed "All Service Vehicles"; trackless trolleys capable of operating as gas-electric buses when off wire, and used them successfully between 1935 and 1948. Since

5760-648: The first BRT system in the world was the Runcorn Busway in Runcorn , England. First conceived in the Runcorn New Town Masterplan in 1966, it opened for services in October 1971 and all 22 kilometres (14 mi) were operational by 1980. The central station is at Runcorn Shopping City where buses arrive on dedicated raised busways to two enclosed stations. Arthur Ling , Runcorn Development Corporation's Master Planner, said that he had invented

5856-652: The first cities to put trolleybuses into service in Great Britain, on 20 June 1911. Supposedly, though it was opened on 20 June, the public was not admitted to the Bradford route until the 24th. Bradford was also the last city to operate trolleybuses in the UK; the system closed on 26 March 1972. The last rear-entrance trolleybus in service in Britain was also in Bradford and is now owned by the Bradford Trolleybus Association . Birmingham

SECTION 60

#1732772370858

5952-401: The first switch (before the intersection) would be used to access the right-turn lanes, and the second switch (usually in the intersection) would be for the left-turn). Three common types of switches exist: power-on/power-off (the picture of a switch above is of this type), Selectric, and Fahslabend. A power-on/power-off switch is triggered if the trolleybus is drawing considerable power from

6048-697: The first two low-floor trolleybus models were introduced in Europe, both built in 1991, a "Swisstrolley" demonstrator built by Switzerland's NAW / Hess and an N6020 demonstrator built by Neoplan . The first production-series low-floor trolleybuses were built in 1992: 13 by NAW for the Geneva system and 10 Gräf & Stift for the Innsbruck system  [ de ] . By 1995, such vehicles were also being made by several other European manufacturers, including Skoda , Breda , Ikarus , and Van Hool . The first Solaris "Trollino" made its debut in early 2001. In

6144-442: The following features: Bus-only lanes make for faster travel and ensure that buses are not delayed by mixed traffic congestion . A median alignment bus-only keeps buses away from busy curb-side side conflicts, where cars and trucks are parking, standing and turning. Separate rights of way may be used such as the completely elevated Xiamen BRT . Transit malls or 'bus streets' may also be created in city centers. Fare prepayment at

6240-499: The former Soviet Union countries, Belarus' Belkommunmash built its first low-floor trolleybus (model AKSM-333) in 1999, and other manufacturers in the former Soviet countries joined the trend in the early 2000s. However, because the lifespan of a trolleybus is typically longer than that of a motorbus, the budget allocation and purchase typically factored in the longevity; the introduction of low-floor vehicles applied pressures on operators to retire high-floor trolleybuses that were only

6336-469: The former Soviet Union, the largest trolleybus system in the world in terms of route length while another formerly Soviet city, Minsk , has the largest system in terms of number of routes (which also date back to the Soviet era). Landskrona has the smallest system in terms of route length, while Mariánské Lázně is the smallest city to be served by trolleybuses. Opened in 1914, Shanghai's trolleybus system

6432-662: The green phase or reducing the red phase in the required direction compared to the normal sequence. Prohibiting turns may be the most important measure for moving buses through intersections. The station platforms for BRT systems should be level with the bus floor for quick and easy boarding, making it fully accessible for wheelchairs, disabled passengers and baby strollers, with minimal delays. High-level platforms for high-floored buses makes it difficult to have stops outside dedicated platforms, or to have conventional buses stop at high-level platforms, so these BRT stops are distinct from street-level bus stops. Similar to rail vehicles, there

6528-532: The highest capacity and highest speed BRT system in the world. In January 2004 the first BRT in Southeast Asia, TransJakarta , opened in Jakarta , Indonesia. As of 2015 , at 210 kilometres (130 mi), it is the longest BRT system in the world. Africa's first BRT system was opened in Lagos , Nigeria, in March 2008 but is considered a light BRT system by many people. Johannesburg , South Africa, BRT Rea Vaya ,

6624-402: The highest light rail system." Performance data of 84 systems show More topical are these BRT data After the first BRT system opened in 1971, cities were slow to adopt BRT because they believed that the capacity of BRT was limited to about 12,000 passengers per hour traveling in a given direction during peak demand. While this is a capacity rarely needed in the US (12,000 is more typical as

6720-416: The largest producers in North America and Western Europe – ones whose production totalled more than 1,000 units each – included the U.S. companies Brill (approx. 3,250 total), Pullman-Standard (2,007), and Marmon-Herrington (1,624); the English companies AEC (approx. 1,750), British United Traction (BUT) (1,573), Leyland (1,420) and Sunbeam (1,379); France's Vétra (more than 1,750); and

6816-404: The line profile used. This battery allows them not to depend on overhead lines. They can thus operate with a mix of electric wire and batteries (60% of the time on the wire and 40% on the battery). With the development of battery technology in recent years, trolleybuses with extended off-wire capability through on-board batteries are becoming popular. The on-board battery is charged while the vehicle

6912-414: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Busway&oldid=1166107693 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Bus rapid transit Bus rapid transit ( BRT ), also referred to as

7008-479: The most cities with BRT systems, with 54, led by Brazil with 21 cities. The Latin American countries with the most daily ridership are Brazil (10.7 million), Colombia (3.0 million), and Mexico (2.5 million). In the other regions, China (4.3 million) and Iran (2.1 million) stand out. Currently, TransJakarta is the largest BRT network in the world, with about 251.2 kilometres (156.1 mi) of corridors connecting

7104-445: The operator. The frog runners are pushed into the desired position by the trolley shoe, or the frog is shaped so the shoe is guided onto the exit wire without any moving parts. Well over 200 different trolleybus makers have existed – mostly commercial manufacturers, but in some cases (particularly in communist countries ), built by the publicly owned operating companies or authorities. Of the defunct or former trolleybus manufacturers,

7200-528: The overhead wires, usually by accelerating, at the moment the poles pass over the contacts (the contacts are lined up on the wires in this case). If the trolleybus "coasts" through the switch, the switch will not activate. Some trolleybuses, such as those in Philadelphia and Vancouver, have a manual "power-coast" toggle switch that turns the power on or off. This allows a switch to be triggered in situations that would otherwise be impossible, such as activating

7296-633: The past. For an overview, by country, see Trolleybus usage by country , and for complete lists of trolleybus systems by location, with dates of opening and (where applicable) closure, see List of trolleybus systems and the related lists indexed there. Of the systems existing as of 2012, the majority are located in Europe and Asia, including 85 in Russia and 43 in Ukraine. However, there are eight systems existing in North America and nine in South America. Trolleybuses have been preserved in most of

7392-452: The primary transit mode or as a supplement to rapid transit and commuter rail networks. Trolleybuses are quieter than internal combustion engine vehicles. Mainly a benefit, it also provides much less warning of a trolleybus's approach. A speaker attached to the front of the vehicle can raise the noise to a desired "safe" level. This noise can be directed to pedestrians in front of the vehicle, as opposed to motor noise which typically comes from

7488-445: The rear of a bus and is more noticeable to bystanders than to pedestrians. Trolleybuses can share overhead wires and other electrical infrastructure (such as substations ) with tramways. This can result in cost savings when trolleybuses are added to a transport system that already has trams, though this refers only to potential savings over the cost of installing and operating trolleybuses alone. The wires are attached to poles next to

7584-877: The right side of the street. Groups of criteria form the BRT Standard 2016, which is updated by the Technical Committee of the BRT Standard. High-capacity vehicles such as articulated or even bi-articulated buses may be used, typically with multiple doors for fast entry and exit. Double-decker buses or guided buses may also be used. Advanced powertrain control may be used for a smoother ride. Bottleneck BRT stations typically provide loading areas for simultaneous boarding and alighting of buses through multiple doors coordinated via displays and loudspeakers. An example of high-quality stations include those used on TransMilenio in Bogotá since December 2000,

7680-775: The schedules and live arrival times and stations for buses that feed the BRT, like the SITP (Sistema Integrado de Transporte Público or Public Transit Integrated System) in Bogotá . A special issue arises in the use of buses in metro transit structures. Since the areas where the demand for an exclusive bus right-of-way are apt to be in dense downtown areas where an above-ground structure may be unacceptable on historic, logistic, or environmental grounds, use of BRT in tunnels may not be avoidable. Since buses are usually powered by internal combustion engines , bus metros raise ventilation issues similar to those of motor vehicle tunnels. Powerful fans typically exchange air through ventilation shafts to

7776-492: The station, instead of on board the bus, eliminates the delay caused by passengers paying on board. Fare machines at stations also allow riders to purchase multi-ride stored-value cards and have multiple payment options. Prepayment also allows riders to board at all doors, further speeding up stops. Prohibiting turns for traffic across the bus lane significantly reduces delays to the buses. Bus priority will often be provided at signalized intersections to reduce delays by extending

7872-458: The street and carefully stretched and mounted so that they are the same width apart and same height over the road (usually about 18 to 20 feet (~5.7m)). The pair of wires is insulated from the poles and provides about 500 to 600 volts to the bus below. Trolleybus wire switches (called "frogs" in the UK) are used where a trolleybus line branches into two or where two lines join. A switch may be either in

7968-404: The subway, and with the rear axle driven by a conventional diesel powertrain on freeways and streets. Boston is using a similar approach, after initially using trolleybuses pending delivery of the dual-mode vehicles that was completed in 2005. In 2004, Seattle replaced its "Transit Tunnel" fleet with diesel-electric hybrid buses, which operate similarly to hybrid cars outside the tunnel and in

8064-417: The surface; these are usually as remote as possible from occupied areas, to minimize the effects of noise and concentrated pollution. A straightforward way to reduce air quality problems is to use internal combustion engines with lower emissions. The 2008 Euro V European emission standards set a limit on carbon monoxide from heavy-duty diesel engines of 1.5 g/kWh, one third of the 1992 Euro I standard. As

8160-479: The switch assembly, which power a pair of electromagnets , one in each frog with diverging wires ("frog" generally refers to one fitting that guides one trolley wheel / shoe onto a desired wire or across one wire. Occasionally, "frog" has been used to refer to the entire switch assembly). Multiple branches may be handled by installing more than one switch assembly. For example, to provide straight-through, left-turn or right-turn branches at an intersection, one switch

8256-428: The theoretical maximum throughput measured in passengers per hour per direction (PPHPD) for a single traffic lane is some 150,000 passengers per hour (250 passengers per vehicle, one vehicle every 6 seconds). In real world conditions BRT Rio (de Janeiro, BRS Presidente Vargas) with 65.000 PPHPD holds the record, TransMilenio Bogotá and Metrobus Istanbul perform 49,000 – 45,000 PPHPD, most other busy systems operating in

8352-467: The transition from high-floor to low-floor has meant that some equipment previously placed under the floor has been moved to the roof. Some transit operators have needed to modify their maintenance facilities to accommodate this change, a one-time expense. Since the end of 1997, no double-decker trolleybuses have been in service anywhere in the world, but, in the past, several manufacturers made such vehicles. Most builders of double-deck trolleybuses were in

8448-499: The use of dual buses, with doors on the left side of the bus that are located at the height of high-level platforms, and doors on the right side that are located at curb height. These buses can use the main line with its exclusive lanes and high level platforms, located on the center of the street and thus, boarding and leaving passengers on the left side. These buses can exit the main line and use normal lanes that share with other vehicles and stop at regular stations located on sidewalks on

8544-505: The world's fourth passenger-carrying trolleybus system, which operated at Bielatal (Biela Valley, near Dresden ), Germany. Schiemann built and operated the Bielatal system , and is credited with developing the under-running trolley current collection system, with two horizontally parallel overhead wires and rigid trolleypoles spring-loaded to hold them up to the wires. Although this system operated only until 1904, Schiemann had developed what

8640-575: The world's largest trolleybus manufacturer, producing over 65,000 since 1951, mostly for Russia/CIS countries, but after its bankruptcy, its facilities were partially loaned out to PC Transport Systems . Škoda is Western and Central Europe's largest and the second largest in the world, having produced over 14,000 trolleybuses since 1936, mostly for export, and it also supplies trolleybus electrical equipment for other bus builders such as Solaris, SOR and Breda. In Mexico, trolleybus production ended when MASA , which had built more than 860 trolleybuses since 1979,

8736-581: Was acquired in 1998 by Volvo. However, Dina , which is now that country's largest bus and truck manufacturer, began building trolleybuses in 2013. A significant change to trolleybus designs starting in the early 1990s was the introduction of low-floor models, which began only a few years after the first such models were introduced for motorbuses . These have gradually replaced high-floor designs, and by 2012, every existing trolleybus system in Western Europe had purchased low-floor trolleybuses, with

8832-438: Was developed by the Institute for Transportation and Development Policy (ITDP) to score BRT corridors, producing a list of rated BRT corridors meeting the minimum definition of BRT. The highest rated systems received a "gold" ranking. The latest edition of the standard was published in 2016. Other metrics used to evaluate BRT performance include: Based on this data, the minimum headway and maximum current vehicle capacities,

8928-503: Was inspired by the previous transport system of the National Urban Transport Company of Peru (In Spanish: ENATRU ), which only had quick access on Lima downtown , but it would not be considered BRT itself. Many of the elements that have become associated with BRT were innovations first suggested by Carlos Ceneviva, within the team of Curitiba Mayor Jaime Lerner . Initially just dedicated bus lanes in

9024-550: Was the first UK city to replace a tram route with trolleybuses, while Wolverhampton , under the direction of Charles Owen Silvers, became world-famous for its trolleybus designs. There were 50 trolleybus systems in the UK, London's being the largest. By the time trolleybuses arrived in Britain in 1911, the Schiemann system was well established and was the most common, although the Cédès-Stoll (Mercédès-Électrique-Stoll) system

9120-669: Was the first true BRT in Africa, in August 2009, carrying 16,000 daily passengers. Rea Vaya and MIO (BRT in Cali , Colombia, opened 2009) were the first two systems to combine full BRT with some services that also operated in mixed traffic, then joined the BRT trunk infrastructure. In 2017 Marrakesh , Morocco, opened its first BRT Marrakesh trolleybus system (BHNS De Marrakesh) trolleybuses Corridors of 8 km (5.0 mi), of which 3 km (1.9 mi) of overhead wiring for operation as trolleybus. BRT systems normally include most of

9216-559: Was tried in West Ham (in 1912) and in Keighley (in 1913). Smaller trackless trolley systems were built in the US early as well. The first non-experimental system was a seasonal municipal line installed near Nantasket Beach in 1904; the first year-round commercial line was built to open a hilly property to development just outside Los Angeles in 1910. The trackless trolley was often seen as an interim step, leading to streetcars . In

#857142