Zilog, Inc. is an American manufacturer of microprocessors , microcontrollers , and application-specific embedded system-on-chip (SoC) products .
120-673: The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Launched in 1976 and software-compatible with the Intel 8080 , it offered a compelling alternative due to its better integration and increased performance. As well as the 8080's seven registers and flags register, the Z80 had an alternate register set that duplicated them, two 16-bit index registers and additional instructions including bit manipulation and block copy/search. Initially intended for use in embedded systems like
240-552: A MOS Technology 8502 . Zilog was later producing a low-power Z80 suitable for the growing laptop computer market of the early 1980s. Intel produced a CMOS 8085 (80C85) used in battery-powered portable computers, such as the Kyocera -designed laptop from April 1983, also sold by Tandy (as TRS-80 Model 100 ), Olivetti, and NEC. In following years, however, CMOS versions of the Z80 (from both Zilog and Japanese manufacturers) would dominate this market as well, in products such as
360-690: A digital signal processor (DSP), with higher clock speeds and power consumption. The first multi-chip microprocessors, the Four-Phase Systems AL1 in 1969 and the Garrett AiResearch MP944 in 1970, were developed with multiple MOS LSI chips. The first single-chip microprocessor was the Intel 4004 , released on a single MOS LSI chip in 1971. It was developed by Federico Faggin , using his silicon-gate MOS technology, along with Intel engineers Marcian Hoff and Stan Mazor , and Busicom engineer Masatoshi Shima . It
480-480: A personal computer , and may lack human interaction devices of any kind. Microcontrollers must provide real-time (predictable, though not necessarily fast) response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspend processing the current instruction sequence and to begin an interrupt service routine (ISR, or "interrupt handler") which will perform any processing required based on
600-538: A "window" on the top of the device through which program memory can be erased by ultraviolet light, ready for reprogramming after a programming ("burn") and test cycle. Since 1998, EPROM versions are rare and have been replaced by EEPROM and flash, which are easier to use (can be erased electronically) and cheaper to manufacture. Other versions may be available where the ROM is accessed as an external device rather than as internal memory, however these are becoming rare due to
720-656: A 16-bit address register HL. In the 8080, this pairing was added to the BC and DE pairs as well, while HL was generalized to allow use as a 16-bit accumulator, not just an address register. The 8080 also introduced immediate 16-bit data for BC, DE, HL, and SP loads. Furthermore, direct 16-bit copying between HL and memory was now possible, using a direct address. The Z80 orthogonalized this further by making all 16-bit register pairs, including IX and IY, more general purpose, as well as allowing 16-bit copying directly to and from memory for all of these pairs. The 16-bit IX and IY registers in
840-475: A European second-source manufacturer SGS . The design was also copied by several Japanese, Eastern European and Soviet manufacturers. This won the Z80 acceptance in the world market since large companies like NEC , Toshiba , Sharp , and Hitachi started to manufacture the device (or their own Z80-compatible clones or designs). The Z80 continued to be used in embedded systems for decades after its introduction, with ongoing advancements. The latest addition to
960-488: A Harvard architecture is used, instruction words for the processor may be a different bit size than the length of internal memory and registers; for example: 12-bit instructions used with 8-bit data registers. The decision of which peripheral to integrate is often difficult. The microcontroller vendors often trade operating frequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance
1080-437: A byte and two T-states for each occurrence. This naturally makes the index register unavailable for any other use, or else the need to constantly reload it would negate its efficiency. Zilog The company was founded in 1974 by Federico Faggin and Ralph Ungermann , who were soon joined by Masatoshi Shima . All three had left Intel after working on the 4004 and 8080 microprocessors. The company's most famous product
1200-404: A copyright on their assembly mnemonics, a new assembly syntax had to be developed for the Z80. This time a more systematic approach was used: These principles made it straightforward to find names and forms for all new Z80 instructions, as well as orthogonalizations of old ones, such as LD BC,1234 . Apart from naming differences, and despite a certain discrepancy in basic register structure,
1320-471: A day later, Faggin and Ungermann were kicking around ideas based on "integrated logic" when Ungermann said "how about Zilog?" Faggin immediately agreed, stating they could say it was the "last word in integrated logic". When they met the next day and both immediately recalled it, the company had its name. The first samples were returned from Mostek on March 9, 1976. By the end of the month, they had also completed an assembler -based development system . Some of
SECTION 10
#17327718554291440-424: A device. So the analog-to-digital converter is used to convert the incoming data into a form that the processor can recognize. A less common feature on some microcontrollers is a digital-to-analog converter (DAC) that allows the processor to output analog signals or voltage levels. In addition to the converters, many embedded microprocessors include a variety of timers as well. One of the most common types of timers
1560-843: A general-purpose processor might require several instructions to test a bit in a register and branch if the bit is set, where a microcontroller could have a single instruction to provide that commonly required function. Microcontrollers historically have not had math coprocessors , so floating-point arithmetic has been performed by software. However, some recent designs do include FPUs and DSP-optimized features. An example would be Microchip's PIC32 MIPS-based line. Microcontrollers were originally programmed only in assembly language , but various high-level programming languages , such as C , Python and JavaScript , are now also in common use to target microcontrollers and embedded systems . Compilers for general-purpose languages will typically have some restrictions as well as enhancements to better support
1680-497: A high-level design, adding several concepts of his own. In particular, he used his experience on NEC minicomputers to add the concept of two sets of processor registers so they could quickly respond to interrupts . Ungerman began the development of a series of related controllers and peripheral chips that would complement the design. Through this period, Shima developed a legendary reputation for being able to convert logic concepts into physical design in realtime; while discussing
1800-465: A low-cost product like this would not be able to compete with a design from a company with its own production lines, like Intel. They then began considering a more complex microprocessor instead, initially known as the Super 80, with the main feature being its use of a +5 V bus instead of the more common −5, +5 and 12 V used by designs like the 8080. The new design was intended to be compatible with
1920-457: A method using only the 8080-model registers. The Z80 also introduced a new signed overflow flag and complemented the fairly simple 16-bit arithmetics of the 8080 with dedicated instructions for signed 16-bit arithmetics. The 8080-compatible registers AF, BC, DE, HL are duplicated as a separate register file in the Z80, where the processor can quickly (four t-states, the least possible execution time for any Z80 instruction) switch from one bank to
2040-425: A microcontroller from a low-power sleep state where the processor is halted until required to do something by a peripheral event. Typically microcontroller programs must fit in the available on-chip memory, since it would be costly to provide a system with external, expandable memory. Compilers and assemblers are used to convert both high-level and assembly language code into a compact machine code for storage in
2160-459: A proposed feature, he would often interrupt and state how much room that would take on the chip and veto its addition if it was too large. The first pass at the design was complete by April 1975. Shima had completed a logic layout by the beginning of May. A second version of the logic design was issued on August 7 and the bus details by September 16. Tape-out was completed in November and converting
2280-422: A regular encoding (common with the 8080) is that each of the 8-bit registers can be loaded from themselves (e.g. LD A,A ). This is effectively a NOP . New block transfer instructions can move up to 64 kilobytes from memory to memory or between memory and I/O peripheral ports. Block instructions LDIR and LDDR ( l oa d , i ncrement/ d ecrement, r epeat) use HL to point to the source address, DE to
2400-506: A relative address ( JR instead of JP ) using a signed 8-bit displacement. Only the zero and carry flags can be tested for these new two-byte JR instructions. (All 8080 jumps and calls, conditional or not, are three-byte instructions.) A two-byte instruction specialized for program looping is also new to the Z80: DJNZ ( d ecrement j ump if n on- z ero) takes a signed 8-bit displacement as an immediate operand. The B register
2520-766: A self-contained system with a processor, memory and peripherals and can be used as an embedded system . The majority of microcontrollers in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system , and low software complexity. Typical input and output devices include switches, relays , solenoids , LED 's, small or custom liquid-crystal displays , radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of
SECTION 20
#17327718554292640-574: A smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board, in addition to tending to decrease the defect rate for the finished assembly. A microcontroller is a single integrated circuit , commonly with the following features: This integration drastically reduces the number of chips and the amount of wiring and circuit board space that would be needed to produce equivalent systems using separate chips. Furthermore, on low pin count devices in particular, each pin may interface to several internal peripherals, with
2760-530: A system not using interrupts) it can be used as simply another 8-bit data register. The instructions LD A,R and LD A,I affect the Z80 flags register, unlike all the other LD (load) instructions. The Sign (bit 7) and Zero (bit 6) flags are set according to the data loaded from the Refresh or Interrupt source registers. For both instructions, the Parity/Overflow flag (bit 2) is set according to
2880-550: A total of $ 10 million for the entire industry being spent in all of 1975 (equivalent to $ 57 million in 2023). Someone from Exxon contacted the still-unnamed company, and arranged a meeting that eventually led to them providing an initial $ 500,000 funding in June 1975 (equivalent to $ 2.8 million in 2023). With funding being discussed, and a design to be built, Shima joined in February 1975. Shima immediately set about producing
3000-428: A variable base address (as in recursive stack frames ) and can also reduce code size by removing the need for multiple short instructions using non-indexed registers. However, although they may save speed in some contexts when compared to long/complex "equivalent" sequences of simpler operations, they incur a lot of additional CPU time (e.g., 19 T-states to access one indexed memory location vs. as little as 11 to access
3120-516: A week in order to meet the tight schedule given by the financial investors. The Z80 offered many improvements over the 8080: The Z80 took over from the 8080 and its offspring, the 8085 , in the processor market and became one of the most popular and widely used 8-bit CPUs. Some organizations such as British Telecom remained loyal to the 8085 for embedded applications, owing to their familiarity with it and to its on-chip serial interface and interrupt architecture. Likewise, Zenith Data Systems paired
3240-409: Is a small computer on a single integrated circuit . A microcontroller contains one or more CPUs ( processor cores ) along with memory and programmable input/output peripherals. Program memory in the form of NOR flash , OTP ROM , or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM . Microcontrollers are designed for embedded applications, in contrast to
3360-519: Is an acronym of Z integrated logic , also thought of as "Z for the last word of Integrated Logic". Zilog was started in California in 1974 by Federico Faggin and Ralph Ungermann with support and encouragement from Exxon 's computing division. Both left Intel after working on the 4004 and 8080 microprocessors and custom chips. Masatoshi Shima , who also worked with Faggin on the 4004 and 8080, joined Zilog in 1975. Ungermann did not want
3480-553: Is decremented, and if the result is nonzero, then program execution jumps relative to PC; the flags remain unaltered. To perform an equivalent loop on an 8080 requires separate DEC and conditional jump (to a two-byte absolute address) instructions (totalling four bytes), and the DEC alters the flag register. The index register (IX/IY, often abbreviated XY) instructions can be useful for accessing data organised in fixed heterogenous structures (such as records ) or at fixed offsets relative
3600-509: Is in context unless carefully commented. Thus it is advisable that exchange instructions be used directly and in short discrete code segments. The Zilog Z280 instruction set includes JAF and JAR instructions which jump to a destination address if the alternate registers are in context (thus officially recognizing this programming complication). As on the 8080, 8-bit registers are typically paired to provide 16-bit versions. The 8080 compatible registers are: The new registers introduced with
3720-591: Is often referred to as the "alternate register set" (by some, the "primed" register file since the apostrophe character is used to denote them in assembler source code and the Zilog documentation). This emphasizes that only one set is addressable at any time. However, the 8-bit accumulator A with its flag register F is bifurcated from the "general purpose" register pairs HL, DE and BC. This is accomplished with two separate instructions used to swap their accessibilities: EX AF,AF' exchanges only register pair AF with AF', while
Zilog Z80 - Misplaced Pages Continue
3840-515: Is the Z80 microprocessor, which played an important role in the evolution of early computing. Software-compatible with the Intel 8080, it offered a compelling alternative due to its lower cost and increased performance, propelling it to widespread adoption in video game systems and home computers during the late 1970s and early 1980s. The name, pronounced with a long "i" ( / ˈ z aɪ l ɒ ɡ / ),
3960-561: Is the ZX81 , which lets it keep track of character positions on the TV screen by triggering an interrupt at wrap around (by connecting INT to A6). The interrupt vector register , I , is used for the Z80 specific mode 2 interrupts (selected by the IM 2 instruction). It supplies the high byte of the base address for a 128-entry table of service routine addresses which are selected via an index sent to
4080-421: Is the programmable interval timer (PIT). A PIT may either count down from some value to zero, or up to the capacity of the count register, overflowing to zero. Once it reaches zero, it sends an interrupt to the processor indicating that it has finished counting. This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the air conditioner on/off,
4200-412: Is used as the byte counter. The Z80 can input and output any register to an I/O port using register C to designate the port. (The 8080 only performs I/O through the accumulator A, using a direct port address specified in the instruction; a self-modifying code technique is required to use a variable 8080 port address.) The last group of block instructions perform a CP compare operation between
4320-564: The EXX instruction exchanges the three general purpose register pairs HL, DE and BC with their alternates HL', DE' and BC'. Thus the accumulator A can interact independently with any of the general purpose 8-bit registers in the alternate (or primed) register file, or, if HL' contains a pointer to memory, some byte there (DE' and BC' can also transfer 8-bit data between memory and accumulator A). This can become confusing for programmers because after executing EX AF,AF' or EXX what were previously
4440-729: The Amstrad NC100 , Cambridge Z88 and Tandy's own WP-2. Perhaps a key to the initial success of the Z80 was the built-in DRAM refresh, at least in markets such as CP/M and other office and home computers. (Most Z80 embedded systems use static RAM that do not need refresh.) It may also have been its minimalistic two-level interrupt system, or conversely, its general multi-level daisy-chain interrupt system useful in servicing multiple Z80 IO chips. These features allowed systems to be built with less support hardware and simpler circuit board layouts. However, others claim that its popularity
4560-584: The CP/M operating system and Intel's PL/M compiler for 8080 (as well as its generated code), would run unmodified on the new Z80 CPU. Masatoshi Shima designed most of the microarchitecture as well as the gate and transistor levels of the Z80 CPU, assisted by a small number of engineers and layout people. CEO Federico Faggin was actually heavily involved in the chip layout work, together with two dedicated layout people. According to Faggin, he worked 80 hours
4680-727: The ColecoVision game console (1982) and Sega 's Master System (1986) and Game Gear (1990). In the 1990s, the Z80 was the CPU of the Texas Instruments graphing calculator series, as well as being used as the secondary/support CPU in the Sega Genesis (most typically used for sound ). After the Z80 Zilog introduced the 16-bit Z8000 and 32-bit Z80000 processors, but these were not particularly successful, and
4800-619: The Digital Equipment Corporation Rainbow 100 similarly added a Z80 to an Intel 8088-based MS-DOS computer to enable the machine to run both MS-DOS and CP/M software natively. The Z80 was a common choice for creators of video games during the Golden age of arcade video games , with a Z80 powering Pac-Man , dual Z80s in Scramble , and three in each Galaga machine. It was the central processor for
4920-623: The Game Boy and TI-83 series . The Z80 was the brainchild of Federico Faggin , a key figure behind the creation of the Intel 8080. After leaving Intel in 1974, Faggin co-founded Zilog with Ralph Ungermann . The Z80 was released in July 1976. With the revenue from the Z80, the company built its own chip factories . Zilog licensed the Z80 to the US-based Synertek and Mostek , which had helped them with initial production, as well as to
Zilog Z80 - Misplaced Pages Continue
5040-401: The Intel 8048 , with commercial parts first shipping in 1977. It combined RAM and ROM on the same chip with a microprocessor. Among numerous applications, this chip would eventually find its way into over one billion PC keyboards. At that time Intel's President, Luke J. Valenter, stated that the microcontroller was one of the most successful products in the company's history, and he expanded
5160-575: The MSX architecture and the Microbee and Tandy TRS-80 (models I, II, III, 4, and others). The CP/M-80 operating system (and its huge software library featuring hits like WordStar and dBase ) was known to be the Z80 disk operating system, and its success is partly due to the popularity of the Z80. The 1985 Commodore 128 added a Z80 to the Commodore 64 hardware allowing it to run CP/M software;
5280-534: The SPARCstation 20 . Zilog also formed a Systems Division, which designed the Zilog System 8000, a Z8000- or Z80000-based multiuser computer system running a Unix derivative called ZEUS (Zilog Enhanced UNIX System). Zilog attempted to enter the 32-bit microcontroller market in February 2006 with the demonstration of ARM9 -based Point-Of-Sale ( POS ) microcontroller product line. The final product
5400-703: The microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips. In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on a chip (SoC). A SoC may include a microcontroller as one of its components but usually integrates it with advanced peripherals like a graphics processing unit (GPU), a Wi-Fi module, or one or more coprocessors . Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, implantable medical devices, remote controls, office machines, appliances, power tools, toys, and other embedded systems . By reducing
5520-771: The "world's smallest computer" was announced by the University of Michigan . The device is a " 0.04 mm 16 nW wireless and batteryless sensor system with integrated Cortex-M0+ processor and optical communication for cellular temperature measurement." It "measures just 0.3 mm to a side—dwarfed by a grain of rice. [...] In addition to the RAM and photovoltaics , the new computing devices have processors and wireless transmitters and receivers . Because they are too small to have conventional radio antennae, they receive and transmit data with visible light. A base station provides light for power and programming, and it receives
5640-572: The 6501 and 6502 . Their chief aim was to reduce this cost barrier but these microprocessors still required external support, memory, and peripheral chips which kept the total system cost in the hundreds of dollars. One book credits TI engineers Gary Boone and Michael Cochran with the successful creation of the first microcontroller in 1971. The result of their work was the TMS 1000 , which became commercially available in 1974. It combined read-only memory, read/write memory, processor and clock on one chip and
5760-650: The 8-bit segment has dominated the MCU market [..] 16-bit microcontrollers became the largest volume MCU category in 2011, overtaking 8-bit devices for the first time that year [..] IC Insights believes the makeup of the MCU market will undergo substantial changes in the next five years with 32-bit devices steadily grabbing a greater share of sales and unit volumes. By 2017, 32-bit MCUs are expected to account for 55% of microcontroller sales [..] In terms of unit volumes, 32-bit MCUs are expected account for 38% of microcontroller shipments in 2017, while 16-bit devices will represent 34% of
5880-405: The 8080); the four remaining codes are used extensively as opcode prefixes : CB and ED enable extra instructions, and DD or FD select IX+d or IY+d respectively (in some cases without displacement d) in place of HL. This scheme gives the Z80 a large number of permutations of instructions and registers; Zilog categorizes these into 158 different "instruction types", 78 of which are the same as those of
6000-429: The 8080, as the Z80 sometimes indicates signed overflow where the 8080 would indicate parity, possibly causing the logic of some practical 8080 software to fail on the Z80.) This new overflow flag is used for all new Z80-specific 16-bit operations ( ADC , SBC ) as well as for 8-bit arithmetic operations, while the 16-bit operations inherited from the 8080 ( ADD , INC , DEC ) do not affect it. Also, bit 1 of
6120-499: The 8080, but add many of the nice features of the Motorola 6800 , including index registers and improved interrupts . While still being set up, the industry newsletter Electronic News heard of them and published a story on the newly formed company. This attracted the attention of Exxon Enterprises, Exxon 's high-tech investment arm. At the time, in the midst of the recession, there was very little venture capital available, with
SECTION 50
#17327718554296240-559: The 8080, the Z80's combination of compatibility, affordability, and superior performance propelled it to widespread adoption in video game systems and home computers during the late 1970s and early 1980s, fueling the personal computing revolution. Products it was used in include the Osborne 1 , Radio Shack TRS-80 , ColecoVision , ZX Spectrum and the Pac-Man cabinet; in later years it remained used in portables, best known for use in
6360-541: The 8080. Alongside the 6502 , the Z80 was one of the most popular 8-bit processors for general purpose microcomputers and other applications from the late 1970s well into the 1980s, and while modern CMOS versions of the 6502 are still in production and use today, the Z80 was discontinued in 2024. The Z80 CPU was used in the Sinclair ZX80 , ZX81 , ZX Spectrum and the Amstrad CPC home computers as well as
6480-676: The 8085 with the 16-bit Intel 8088 in its first MS-DOS computer, the Zenith Z-100 , despite having previous experience with its pioneering Z80-based Heathkit H89 and Zenith Z-89 products. However, other computers were made integrating the Z80 with other CPUs: the Radio Shack TRS-80 Model ;16 with a Motorola 68000 , the DEC Rainbow with an 8088, and the Commodore ;128 with
6600-463: The CPU during an interrupt acknowledge cycle; this index is simply the low byte part of the pointer to the tabulated indirect address pointing to the service routine. The pointer identifies a particular peripheral chip or peripheral function or event, where the chips are normally connected in a so-called daisy chain for priority resolution. Like the refresh register, this register has also sometimes been used creatively; in interrupt modes 0 and 1 (or in
6720-410: The Intel 8080 (allowing operation of all 8080 programs on a Z80). The Zilog documentation further groups instructions into the following categories (most from the 8080, others entirely new like the block and bit instructions, and others 8080 instructions with more versatile addressing modes, like the 16-bit loads, I/O, rotates/shifts and relative jumps): No explicit multiply instructions are available in
6840-743: The OTP versions, which could be made in lower-cost opaque plastic packages. For the erasable variants, quartz was required, instead of less expensive glass, for its transparency to ultraviolet light—to which glass is largely opaque—but the main cost differentiator was the ceramic package itself. In 1993, the introduction of EEPROM memory allowed microcontrollers (beginning with the Microchip PIC16C84 ) to be electrically erased quickly without an expensive package as required for EPROM , allowing both rapid prototyping, and in-system programming . (EEPROM technology had been available prior to this time, but
6960-459: The Z80 and 8086 syntax are virtually isomorphic for a large portion of instructions. Only quite superficial similarities (such as the word MOV, or the letter X, for extended register) exist between the 8080 and 8086 assembly languages, although 8080 programs can be translated to 8086 assembly language by translator programs . The Z80 uses 252 out of the available 256 codes as single byte opcodes ("root instruction" most of which are inherited from
7080-583: The Z80 are fairly conventional, ultimately based on the register structure of the Datapoint 2200 . The Z80 was designed as an extension of the Intel 8080, created by the same engineers, which in turn was an extension of the 8008 . The 8008 was basically a PMOS implementation of the TTL-based CPU of the Datapoint 2200. The 2200 design allowed 8-bit registers H and L (High and Low) to be paired into
7200-469: The Z80 are primarily intended as base address-registers, where a particular instruction supplies a constant offset that is added to the previous values, but they are also usable as 16-bit accumulators, among other things. A limitation is that all operand references involving IX or IY require an extra instruction prefix byte, adding at least four clock cycles over the timing of an instruction using HL instead; this sometimes makes using IX or IY less efficient than
7320-423: The Z80 are: The refresh register , R , increments each time the CPU fetches an opcode (or an opcode prefix, which internally executes like a 1-byte instruction) and has no simple relationship with program execution. This has sometimes been used to generate pseudorandom numbers in games, and also in software protection schemes. It has also been employed as a "hardware" counter in some designs; an example of this
SECTION 60
#17327718554297440-522: The Z80 family is the eZ80 , which was offered alongside successor chips. Zilog announced the discontinuation of the Z80 in April 2024 after nearly five decades of production. At Fairchild Semiconductor , and later at Intel , physicist and engineer Federico Faggin had been working on fundamental transistor and semiconductor manufacturing technology. He also developed the basic design methodology used for memories and microprocessors at Intel and led
7560-473: The Z80 support and peripheral ICs were under development at this point, and many of them were launched during the following year. Among them were the Z80 CTC (counter/timer), Z80 DMA (direct memory access), Z80 DART (dual asynchronous receiver–transmitter), Z80 SIO (synchronous communication controller), and Z80 PIO (parallel input/output). The Z80 was officially launched in July 1976. One of the first customers
7680-469: The Z80. However, this would likely be erroneous code on the 8080, as DAA was defined for addition only on that processor. The Z80 has six new LD instructions that can load the DE, BC, and SP register pairs from memory, and load memory from these three register pairs—unlike the 8080. As on the 8080, load instructions do not affect the flags (except for the special-purpose I and R register loads). A result of
7800-464: The alternate (primed) registers are now the main registers, and vice versa. The only way for the programmer to tell which set(s) are in context (while "playing computer" while scrutinizing the assembler source text, or worse, poring over code with a debugger) is to trace where each register swap is made at each point in the program. Obviously if many jump and calls are made within these code segments it can quickly become difficult to tell which register file
7920-456: The byte at (HL) and the accumulator A. Register pair DE is not used. The repeating versions CPIR and CPDR only terminate if BC goes to zero or a match is found. HL is left pointing to the byte after ( CPIR ) or before ( CPDR ) the matching byte. If no match is found the Z ;flag is reset. There are non-repeating versions CPI and CPD . Unlike the 8080, the Z80 can jump to
8040-1035: The cheapest 8-bit microcontrollers being available for under US$ 0.03 in 2018, and some 32-bit microcontrollers around US$ 1 for similar quantities. In 2012, following a global crisis—a worst ever annual sales decline and recovery and average sales price year-over-year plunging 17%—the biggest reduction since the 1980s—the average price for a microcontroller was US$ 0.88 ( US$ 0.69 for 4-/8-bit, US$ 0.59 for 16-bit, US$ 1.76 for 32-bit). In 2012, worldwide sales of 8-bit microcontrollers were around US$ 4 billion , while 4-bit microcontrollers also saw significant sales. In 2015, 8-bit microcontrollers could be bought for US$ 0.311 (1,000 units), 16-bit for US$ 0.385 (1,000 units), and 32-bit for US$ 0.378 (1,000 units, but at US$ 0.35 for 5,000). In 2018, 8-bit microcontrollers could be bought for US$ 0.03 , 16-bit for US$ 0.393 (1,000 units, but at US$ 0.563 for 100 or US$ 0.349 for full reel of 2,000), and 32-bit for US$ 0.503 (1,000 units, but at US$ 0.466 for 5,000). In 2018,
8160-420: The chip level. In August 2017, Zilog and its parent IXYS Corporation were acquired by Littelfuse Inc in exchange for $ 750 million in cash and stocks. The Z80(i) is an improved implementation of the Intel 8080 architecture, with substantial extensions to the register model and instruction set and with added hardware interface features. At introduction, the Z80 was faster, more capable, and much cheaper than
8280-658: The company developed the Z8 Encore! 8-bit Flash MCU and ZNEO 16-bit Flash MCU product families. In February 2007, Zilog hired Darin Billerbeck to replace Jim Thorburn as president and CEO. The last year Zilog introduced any new 8-bit microcontroller products was 2007. With no new product road map, FY2008 sales fell 20% to $ 67.2 million. Sales fell 46% in FY2009 to $ 36.2 million. In January 2008, Zilog declined an unsolicited proposal made by Universal Electronics Inc. to acquire
8400-523: The company for $ 62.4 million in cash, which was significantly below the market valuation of Zilog's stock at the time. Details of the acquisition have been under investigation. Since early 2010, Zilog has refocused on the industrial and consumer markets for motion detection, motor control, RF wireless and embedded security applications, and is currently producing a number of reference designs that integrate its 8- and 16-bit microcontrollers with IXYS power management products. In February 2012, Zilog announced
8520-476: The company refocused on the microcontroller market, producing both basic CPUs and application-specific integrated circuits/standard products (ASICs/ASSPs) built around a CPU core. As well as producing processors, Zilog has produced several other components. One of the most famous was the Zilog SCC serial communications controller as found on early Apple Macintosh , Sun SPARCstations and SPARCservers up to
8640-465: The company to become an Exxon subsidiary and left Zilog in 1978. On January 1, 1979, Zilog released the first issue of their comic book Captain Zilog , which featured the Z8000 computer. The Z8000, introduced that year, was the company's first 16-bit microprocessor. The company became a subsidiary of Exxon in 1980. Exxon initially acquired 51 percent of the company before buying it outright; however,
8760-513: The company to fund the new developments, but after the Internet bubble burst in 2000 and the resultant reduction in customer demand for such products, Curtis Crawford was replaced by James (Jim) Thorburn, who reorganized the company under Chapter 11 bankruptcy in late 2001 and refocused it on the 8- and 16-bit microcontroller market. Jim Thorburn led Zilog back into profitability, and by FY 2007, Zilog had $ 82 million in sales. During this time,
8880-682: The company. On February 19, 2009, Zilog announced that it had sold off its 8-bit Crimzon Universal Remote Control infrared microcontroller product line, as well as its ARM9 32-bit microcontrollers, including the Zatara security microcontrollers and 15 patents, to Maxim Integrated Products. Remote control manufacturer Universal Electronics Inc. purchased all of Zilog's software and intellectual property assets related to Zilog's universal remote control business, including all ROM code, software, and database of infrared codes. Zilog sold these assets for $ 31 million cash. In December 2009, IXYS Corporation bought
9000-500: The current state of the IFF2 flip-flop. Although the Z80 is generally considered an eight-bit CPU, it has a four-bit ALU , so calculations are done in two steps. The first Intel 8008 assembly language was based on a very simple (but systematic) syntax inherited from the Datapoint 2200 design. This original syntax was later transformed into a new, somewhat more traditional, assembly language form for this same original 8008 chip. At about
9120-469: The data." The device is 1 ⁄ 10 th the size of IBM's previously claimed world-record-sized computer from months back in March 2018, which is "smaller than a grain of salt", has a million transistors, costs less than $ 0.10 to manufacture, and, combined with blockchain technology, is intended for logistics and "crypto-anchors"— digital fingerprint applications. A microcontroller can be considered
9240-414: The design directly. Faggin thought this would mean they could never compete even if they set up their own lines, and the agreement fell through. He then turned to Mostek, who agreed to a term of exclusivity while Zilog got their lines set up, and were eventually given the second source agreement. After considering many names for the new company, and finding them so unmemorable they could not recall them even
9360-480: The design. Sometime later, Shima was told by an engineer within NEC that the traps had delayed their copying efforts by six months. The successful launch allowed Faggin and Ungermann to approach Exxon looking for funding to build their own fab. The company agreed, and Zilog built a production line very rapidly. This allowed them to capture about 60 to 70% of the total market for Z80 sales. With their own line running, Mostek
9480-571: The destination address, and BC as a byte counter. Bytes are copied from source to destination, the pointers are incremented or decremented, and the byte counter is decremented until BC reaches zero. Non-repeating versions LDI and LDD move a single byte and bump the pointers and byte counter, which if it becomes zero resets the P/V ;flag. Corresponding memory-to-I/O instructions INIR , INDR , OTIR , OTDR , INI , IND , OUTI and OUTD operate similarly, except that B, not BC,
9600-467: The earlier EEPROM was more expensive and less durable, making it unsuitable for low-cost mass-produced microcontrollers.) The same year, Atmel introduced the first microcontroller using Flash memory , a special type of EEPROM. Other companies rapidly followed suit, with both memory types. Nowadays microcontrollers are cheap and readily available for hobbyists, with large online communities around certain processors. In 2002, about 55% of all CPUs sold in
9720-513: The flags register (a spare bit on the 8080) is used as a flag N that indicates whether the last arithmetic instruction executed was a subtraction or addition. The Z80 version of the DAA instruction (decimal adjust accumulator for BCD arithmetic) checks the N ;flag and behaves accordingly, so a (hypothetical) subtraction followed later by DAA will yield a different result on an old 8080 than on
9840-565: The formerly independent sections under the direction of Les Vadasz, further diluting the microprocessor's place in the company. That year, the 1973–1975 recession reached a peak and Intel laid off a number of employees. All of this led to Faggin becoming restless, and he invited Ungermann out for drinks and asked if he would be interested in starting their own company. Ungermann immediately agreed, and as he had less to do at Intel, left in August or September, followed by Faggin, whose last day at Intel
9960-757: The heater on/off, etc. A dedicated pulse-width modulation (PWM) block makes it possible for the CPU to control power converters , resistive loads, motors , etc., without using many CPU resources in tight timer loops . A universal asynchronous receiver/transmitter (UART) block makes it possible to receive and transmit data over a serial line with very little load on the CPU. Dedicated on-chip hardware also often includes capabilities to communicate with other devices (chips) in digital formats such as Inter-Integrated Circuit ( I²C ), Serial Peripheral Interface ( SPI ), Universal Serial Bus ( USB ), and Ethernet . Microcontrollers may not implement an external address or data bus as they integrate RAM and non-volatile memory on
10080-626: The introductory 2.5 MHz , via the well known 4 MHz (Z80A), up to 6 MHz (Z80B) and 8 MHz (Z80H). The NMOS version has been produced as a 10 MHz part since the late 1980s. CMOS versions were developed with specified upper frequency limits ranging from 4 MHz up to 20 MHz for the version sold today. The CMOS versions allowed low-power standby with internal state retained, having no lower frequency limit. The fully compatible derivatives HD64180 / Z180 and eZ80 are currently specified for up to 33 MHz and 50 MHz, respectively. The programming model and register set of
10200-529: The latter, sometimes the designation OTP was used, standing for "one-time programmable". In an OTP microcontroller, the PROM was usually of identical type as the EPROM, but the chip package had no quartz window; because there was no way to expose the EPROM to ultraviolet light, it could not be erased. Because the erasable versions required ceramic packages with quartz windows, they were significantly more expensive than
10320-417: The low-priced microcontrollers above from 2015 were all more expensive (with inflation calculated between 2018 and 2015 prices for those specific units) at: the 8-bit microcontroller could be bought for US$ 0.319 (1,000 units) or 2.6% higher, the 16-bit one for US$ 0.464 (1,000 units) or 21% higher, and the 32-bit one for US$ 0.503 (1,000 units, but at US$ 0.466 for 5,000) or 33% higher. On 21 June 2018,
10440-420: The management and employees bought it back in 1989, led by Edgar Sack . Zilog went public in 1991, but was acquired in 1998 by Texas Pacific Group for $ 527 million. Curtis Crawford replaced Sack and changed the company's direction towards 32-bit data communications processors. In 1999, Zilog acquired Production Languages Corporation for an unspecified amount less than $ 10 million. Bonds were sold against
10560-427: The microcontroller division's budget by over 25%. Most microcontrollers at this time had concurrent variants. One had EPROM program memory, with a transparent quartz window in the lid of the package to allow it to be erased by exposure to ultraviolet light. These erasable chips were often used for prototyping. The other variant was either a mask-programmed ROM or a PROM variant which was only programmable once. For
10680-432: The microcontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or it may be field-alterable flash or erasable read-only memory. Manufacturers have often produced special versions of their microcontrollers in order to help the hardware and software development of the target system. Originally these included EPROM versions that have
10800-474: The need to minimize the chip size against additional functionality. Microcontroller architectures vary widely. Some designs include general-purpose microprocessor cores, with one or more ROM, RAM, or I/O functions integrated onto the package. Other designs are purpose-built for control applications. A microcontroller instruction set usually has many instructions intended for bit manipulation (bit-wise operations) to make control programs more compact. For example,
10920-426: The original Z80 (being 1 clock slower than in the 8080/8085); nonetheless, they are about twice as fast as performing the same calculations using 8-bit operations, and equally important, they reduce register usage. It was not uncommon for programmers to "poke" different offset displacement bytes (which were typically calculated dynamically) into indexed instructions; this is an example of self-modifying code , which
11040-406: The original Z80, though registers A and HL can be multiplied by powers of two with ADD A,A and ADD HL,HL instructions (similarly IX and IY also). Shift instructions can also multiply or divide by powers of two. Different sizes and variants of additions, shifts, and rotates have somewhat differing effects on flags because most of the flag-changing properties of the 8080 were copied. However,
11160-482: The other; a feature useful for speeding up responses to single-level, high-priority interrupts. A similar feature was present in the 2200, but was never implemented at Intel. The dual register-set is very useful in the embedded role, as it improves interrupt handling performance, but found widespread use in the personal computer role as an additional set of general registers for complex code like floating-point arithmetic or home computer games. The duplicate register file
11280-435: The output state, GPIO pins can drive external devices such as LEDs or motors, often indirectly, through external power electronics. Many embedded systems need to read sensors that produce analog signals. This is the purpose of the analog-to-digital converter (ADC). Since processors are built to interpret and process digital data, i.e. 1s and 0s, they are not able to do anything with the analog signals that may be sent to it by
11400-418: The parity flag bit P of the 8080 (bit 2) is called P/V (parity/overflow) in the Z80 as it serves the additional purpose of a twos complement overflow indicator, a feature lacking in the 8080. Arithmetic instructions on the Z80 set it to indicate overflow rather than parity, while bitwise instructions still use it as a parity flag. (This introduces a subtle incompatibility of the Z80 with code written for
11520-596: The physical world as edge devices . Some microcontrollers may use four-bit words and operate at frequencies as low as 4 kHz for low power consumption (single-digit milliwatts or microwatts). They generally have the ability to retain functionality while waiting for an event such as a button press or other interrupt ; power consumption while sleeping (CPU clock and most peripherals off) may be just nanowatts, making many of them well suited for long lasting battery applications. Other microcontrollers may serve performance-critical roles, where they may need to act more like
11640-409: The pin function selected by software. This allows a part to be used in a wider variety of applications than if pins had dedicated functions. Microcontrollers have proved to be highly popular in embedded systems since their introduction in the 1970s. Some microcontrollers use a Harvard architecture : separate memory buses for instructions and data, allowing accesses to take place concurrently. Where
11760-408: The release of its Z8051 family of microcontrollers and tool sets to fill a vacancy in the developer market for 8051 cores that was created when chip-maker NXP Semiconductors exited the 8051 market. Later that year, Zilog announced its ZGATE Embedded Security solution, which incorporates its eZ80F91 MCU and TCP/IP stack with an embedded firewall to offer protection against cyber threats and attacks at
11880-461: The same chip as the CPU. Using fewer pins, the chip can be placed in a much smaller, cheaper package. Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but often results in decreased net cost of the embedded system as a whole. Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU and external peripherals, having fewer chips typically allows
12000-535: The same memory using HL and INC to point to the next). Thus, for simple or linear accesses of data, use of IX and IY tend to be slower and occupy more memory. Still, they may be useful in cases where the "main" registers are all occupied, by removing the need to save/restore registers. Their officially undocumented 8-bit halves (see below) can be especially useful in this context, for they incur less slowdown than their 16-bit parents. Similarly, instructions for 16-bit additions are not particularly fast (11 clocks) in
12120-517: The same time, the new assembly language was also extended to accommodate the additional addressing modes in the more advanced Intel 8080 chip (the 8008 and 8080 shared a language subset without being binary compatible ; however, the 8008 was binary compatible with the Datapoint 2200). In this process, the mnemonic L , for LOAD , was replaced by various abbreviations of the words LOAD , STORE and MOVE , intermixed with other symbolic letters. The mnemonic letter M , for memory (referenced by HL),
12240-459: The size and cost compared to a design that uses a separate microprocessor , memory, and input/output devices, microcontrollers make digital control of more devices and processes practical. Mixed-signal microcontrollers are common, integrating analog components needed to control non-digital electronic systems. In the context of the Internet of Things , microcontrollers are an economical and popular means of data collection , sensing and actuating
12360-434: The source of the interrupt, before returning to the original instruction sequence. Possible interrupt sources are device-dependent and often include events such as an internal timer overflow, completing an analog-to-digital conversion, a logic-level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery devices, interrupts may also wake
12480-437: The tape into a production mask required two more months. Faggin had already started looking for a production partner. By this time, Synertek and Mostek had both set up the depletion-mode production lines that could be used to produce the design. Having talked to Synertek previously, Faggin approached them first. However, the president of Synertek demanded that the company be given a second source license, allowing them to sell
12600-778: The time of manufacture can be economical. These " mask-programmed " parts have the program laid down in the same way as the logic of the chip, at the same time. A customized microcontroller incorporates a block of digital logic that can be personalized for additional processing capability, peripherals and interfaces that are adapted to the requirements of the application. One example is the AT91CAP from Atmel . Microcontrollers usually contain from several to dozens of general purpose input/output pins ( GPIO ). GPIO pins are software configurable to either an input or an output state. When GPIO pins are configured to an input state, they are often used to read sensors or external signals. Configured to
12720-536: The total, and 4-/8-bit designs are forecast to be 28% of units sold that year. The 32-bit MCU market is expected to grow rapidly due to increasing demand for higher levels of precision in embedded-processing systems and the growth in connectivity using the Internet. [..] In the next few years, complex 32-bit MCUs are expected to account for over 25% of the processing power in vehicles. Cost to manufacture can be under US$ 0.10 per unit. Cost has plummeted over time, with
12840-576: The unique characteristics of microcontrollers. Some microcontrollers have environments to aid developing certain types of applications. Microcontroller vendors often make tools freely available to make it easier to adopt their hardware. Microcontrollers with specialty hardware may require their own non-standard dialects of C, such as SDCC for the 8051 , which prevent using standard tools (such as code libraries or static analysis tools) even for code unrelated to hardware features. Interpreters may also contain nonstandard features, such as MicroPython , although
12960-409: The value should be used as a memory address (as mentioned below), while the 8086 syntax uses brackets instead of ordinary parentheses for this purpose. Both Z80 and 8086 use the + sign to indicate that a constant is added to a base register to form an address. Note that the 8086 is not a complete superset of the Z80. BX is the only 8086 register pair that can be used as a pointer. Because Intel claimed
13080-438: The widespread availability of cheap microcontroller programmers. The use of field-programmable devices on a microcontroller may allow field update of the firmware or permit late factory revisions to products that have been assembled but not yet shipped. Programmable memory also reduces the lead time required for deployment of a new product. Where hundreds of thousands of identical devices are required, using parts programmed at
13200-477: The work on the Intel 4004 , the Intel 8080 and several other ICs. Masatoshi Shima was the principal logic and transistor-level designer of the 4004 and the 8080 under Faggin's supervision, while Ralph Ungermann was in charge of custom integrated circuit design. In early 1974, Intel viewed their microprocessors not so much as products to be sold on their own but as a way to sell more of their main products, static RAM and ROM . A reorganization placed many of
13320-621: The world were 8-bit microcontrollers and microprocessors. Over two billion 8-bit microcontrollers were sold in 1997, and according to Semico, over four billion 8-bit microcontrollers were sold in 2006. More recently, Semico has claimed the MCU market grew 36.5% in 2010 and 12% in 2011. A typical home in a developed country is likely to have only four general-purpose microprocessors but around three dozen microcontrollers. A typical mid-range automobile has about 30 microcontrollers. They can also be found in many electrical devices such as washing machines, microwave ovens, and telephones. Historically,
13440-405: Was Halloween 1974. When Shima heard, he asked to come to the new company as well, but having no actual product design or money, they told him to wait. The newly formed and unnamed company initially began designing a single-chip microcontroller called the 2001. They met with Synertek to discuss fabrication on their lines, and when Faggin began to understand the costs involved it became clear that
13560-466: Was a buyer who, unknown to Zilog, worked for NEC. At the time, the Japanese electronics companies were well known for taking US chip designs and producing them without a license. The Zilog team had worried about this, and Faggin had come up with the idea of adding transistors that would be subtly modified to operate differently than a visual inspection would suggest. Shima added six of these "traps" around
13680-453: Was due to the duplicated registers that allowed fast context switches or more efficient processing of things like floating-point math compared to 8-bit CPUs with fewer registers. (The Z80 can keep several such numbers internally, using HL'HL, DE'DE and BC'BC as 32-bits registers, avoiding having to access them from slower RAM during computation.) For the original NMOS design, the specified upper clock-frequency limit increased successively from
13800-442: Was followed by the 4-bit Intel 4040 , the 8-bit Intel 8008 , and the 8-bit Intel 8080 . All of these processors required several external chips to implement a working system, including memory and peripheral interface chips. As a result, the total system cost was several hundred (1970s US) dollars, making it impossible to economically computerize small appliances. MOS Technology introduced its sub-$ 100 microprocessors in 1975,
13920-456: Was given the go-ahead to start sales of their own versions, the MK3880, which provided a second-source for customers which Intel lacked. At the time, a second-source was considered extremely important as a start-up like Zilog might go out of business and leave potential customers stranded. Faggin designed the instruction set to be binary compatible with the 8080 so that most 8080 code, notably
14040-545: Was lifted out from within the instruction mnemonic to become a syntactically freestanding operand , while registers and combinations of registers became very inconsistently denoted; either by abbreviated operands (MVI D, LXI H and so on), within the instruction mnemonic itself (LDA, LHLD and so on), or both at the same time (LDAX B, STAX D and so on). Illustration of four syntaxes, using samples of equivalent, or (for 8086) very similar, load and store instructions. The Z80 syntax uses parentheses around an expression to indicate that
14160-531: Was regular practice on nearly all early 8-bit processors with non- pipelined execution units. The index registers have a parallel instruction to JP (HL) , which is JP (XY) . This is often seen in stack-oriented languages like Forth , which at the end of every Forth word (atomic subroutines comprising the language) must jump unconditionally back to their thread interpreter routines. Typically this jump instruction appears many hundreds of times in an application, and using JP (XY) rather than JP THREAD saves
14280-567: Was released in 2007 called Zatara. Sales were disappointing and the entire ARM9 series was sold to Maxim Integrated Products in 2009. Zilog also produced Zdots single board computers. It includes Zilog eZ80AcclaimPlus controller, 1MB flash memory, 512KB SRAM, 10BaseT Ethernet Controller, IrDA transceiver, 2 x 60-pin system expansion interface with full MPU bus/control signals, RJ-45 Ethernet connector. Motion detection version includes Z8 Encore! XP MCU. Microcontroller A microcontroller ( MC , UC , or μC ) or microcontroller unit ( MCU )
14400-436: Was targeted at embedded systems. During the early-to-mid-1970s, Japanese electronics manufacturers began producing microcontrollers for automobiles, including 4-bit MCUs for in-car entertainment , automatic wipers, electronic locks, and dashboard, and 8-bit MCUs for engine control. Partly in response to the existence of the single-chip TMS 1000, Intel developed a computer system on a chip optimized for control applications,
#428571