Misplaced Pages

Monsoon

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Last Glacial Maximum ( LGM ), also referred to as the Last Glacial Coldest Period , was the most recent time during the Last Glacial Period where ice sheets were at their greatest extent 26,000 and 20,000 years ago. Ice sheets covered much of Northern North America , Northern Europe , and Asia and profoundly affected Earth 's climate by causing a major expansion of deserts, along with a large drop in sea levels.

#787212

168-497: A monsoon ( / m ɒ n ˈ s uː n / ) is traditionally a seasonal reversing wind accompanied by corresponding changes in precipitation but is now used to describe seasonal changes in atmospheric circulation and precipitation associated with annual latitudinal oscillation of the Intertropical Convergence Zone (ITCZ) between its limits to the north and south of the equator. Usually, the term monsoon

336-499: A channel around 11 micron wavelength and primarily give information about cloud tops. Due to the typical structure of the atmosphere, cloud-top temperatures are approximately inversely related to cloud-top heights, meaning colder clouds almost always occur at higher altitudes. Further, cloud tops with a lot of small-scale variation are likely to be more vigorous than smooth-topped clouds. Various mathematical schemes, or algorithms, use these and other properties to estimate precipitation from

504-520: A cold reversal caused a replacement of much of the arboreal vegetation with Magellanic moorland and Alpine species. On Isla Grande de Chiloé , Magellanic moorland and closed-canopy Nothofagus forests were both present during the LGM, but the former disappeared by the late LGM. Little is known about the extent of glaciers during Last Glacial Maximum north of the Chilean Lake District . To

672-614: A concentrated belt that stretches east–west except in East China where it is tilted east-northeast over Korea and Japan. The seasonal rain is known as Meiyu in China, Jangma in Korea, and Bai-u in Japan, with the latter two resembling frontal rain. The onset of the summer monsoon is marked by a period of premonsoonal rain over South China and Taiwan in early May. From May through August,

840-409: A dominant westerly component and a strong tendency to ascend and produce copious amounts of rain (because of the condensation of water vapor in the rising air). The intensity and duration, however, are not uniform from year to year. Winter monsoons, by contrast, have a dominant easterly component and a strong tendency to diverge, subside and cause drought. Similar rainfall is caused when moist ocean air

1008-705: A dramatic effect on agriculture. All plants need at least some water to survive, therefore rain (being the most effective means of watering) is important to agriculture. While a regular rain pattern is usually vital to healthy plants, too much or too little rainfall can be harmful, even devastating to crops. Drought can kill crops and increase erosion, while overly wet weather can cause harmful fungus growth. Plants need varying amounts of rainfall to survive. For example, certain cacti require small amounts of water, while tropical plants may need up to hundreds of inches of rain per year to survive. In areas with wet and dry seasons, soil nutrients diminish and erosion increases during

1176-622: A few sub-systems, such as the Indian Subcontinental Monsoon which affects the Indian subcontinent and surrounding regions including Nepal, and the East Asian Monsoon which affects southern China, Taiwan , Korea and parts of Japan. The southwestern summer monsoons occur from June through September. The Thar Desert and adjoining areas of the northern and central Indian subcontinent heat up considerably during

1344-730: A formal measurement of uncalibrated radiocarbon years , counted from 1950). In New Zealand and neighbouring regions of the Pacific, temperatures may have been further depressed during part of the LGM by the world's most recent supervolcanic eruption , the Oruanui eruption , approximately 25,500 years BP. However, it is estimated that during the LGM, low-to-mid latitude land surfaces at low elevation cooled on average by 5.8 °C relative to their present-day temperatures, based on an analysis of noble gases dissolved in groundwater rather than examinations of species abundances that have been used in

1512-425: A layer of above-freezing air exists with sub-freezing air both above and below. This causes the partial or complete melting of any snowflakes falling through the warm layer. As they fall back into the sub-freezing layer closer to the surface, they re-freeze into ice pellets. However, if the sub-freezing layer beneath the warm layer is too small, the precipitation will not have time to re-freeze, and freezing rain will be

1680-488: A local glacial maximum in the region. In northeastern Italy , in the region around Lake Fimon , Artemisia -dominated semideserts, steppes, and meadow-steppes replaced open boreal forests at the start of the LGM, specifically during Heinrich Stadial 3. The overall climate of the region became both drier and colder. In the Sar Mountains , the glacial equilibrium-line altitude was about 450 metres lower than in

1848-546: A low pressure system known as a monsoon trough develops over South-East Asia and Australasia and winds are directed toward Australia. In the Philippines, northeast monsoon is called Amihan . The East Asian monsoon affects large parts of Indochina , the Philippines , China, Taiwan , Korea, Japan, and Siberia . It is characterised by a warm, rainy summer monsoon and a cold, dry winter monsoon. The rain occurs in

SECTION 10

#1732765360788

2016-410: A mixture of grassland and tundra prevailed, and even here, the northern limit of tree growth was at least 20° farther south than today. In the period before the LGM, many areas that became completely barren desert were wetter than they are today, notably in southern Australia, where Aboriginal occupation is believed to coincide with a wet period between 40,000 and 60,000 years Before Present (BP,

2184-464: A more even temperature, while land temperatures are more variable. During warmer months sunlight heats the surfaces of both land and oceans, but land temperatures rise more quickly. As the land's surface becomes warmer, the air above it expands and an area of low pressure develops. Meanwhile, the ocean remains at a lower temperature than the land, and the air above it retains a higher pressure. This difference in pressure causes sea breezes to blow from

2352-411: A physical barrier such as a mountain ( orographic lift ). Conductive cooling occurs when the air comes into contact with a colder surface, usually by being blown from one surface to another, for example from a liquid water surface to colder land. Radiational cooling occurs due to the emission of infrared radiation , either by the air or by the surface underneath. Evaporative cooling occurs when moisture

2520-453: A portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity ), so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation; their water vapor does not condense sufficiently to precipitate, so fog and mist do not fall. (Such a non-precipitating combination is a colloid .) Two processes, possibly acting together, can lead to air becoming saturated with water vapor: cooling

2688-567: A single year. A significant portion of the annual precipitation in any particular place (no weather station in Africa or South America were considered) falls on only a few days, typically about 50% during the 12 days with the most precipitation. The Köppen classification depends on average monthly values of temperature and precipitation. The most commonly used form of the Köppen classification has five primary types labeled A through E. Specifically,

2856-461: A slow change in vegetation towards a sparsely distributed vegetation dominated by Nothofagus species. Within this parkland vegetation Magellanic moorland alternated with Nothofagus forest, and as warming progressed even warm-climate trees began to grow in the area. It is estimated that the tree line was depressed about 1,000 m relative to present day elevations during the coldest period, but it rose gradually until 19,300 years ago. At that time

3024-409: A slow-falling drizzle , which has been observed as Rain puddles at its equator and polar regions. Precipitation is a major component of the water cycle , and is responsible for depositing most of the fresh water on the planet. Approximately 505,000 km (121,000 cu mi) of water falls as precipitation each year, 398,000 km (95,000 cu mi) of it over the oceans. Given

3192-752: A subject of research. Although the ice is clear, scattering of light by the crystal facets and hollows/imperfections mean that the crystals often appear white in color due to diffuse reflection of the whole spectrum of light by the small ice particles. The shape of the snowflake is determined broadly by the temperature and humidity at which it is formed. Rarely, at a temperature of around −2 °C (28 °F), snowflakes can form in threefold symmetry—triangular snowflakes. The most common snow particles are visibly irregular, although near-perfect snowflakes may be more common in pictures because they are more visually appealing. No two snowflakes are alike, as they grow at different rates and in different patterns depending on

3360-407: A variety of datasets possessing different formats, time/space grids, periods of record and regions of coverage, input datasets, and analysis procedures, as well as many different forms of dataset version designators. In many cases, one of the modern multi-satellite data sets is the best choice for general use. The likelihood or probability of an event with a specified intensity and duration is called

3528-646: A weakening of the Leeuwin Current (LC). The weakening of the LC would have an effect on the sea surface temperature (SST) field in the Indian Ocean, as the Indonesian Throughflow generally warms the Indian Ocean. Thus these five intervals could probably be those of considerable lowering of SST in the Indian Ocean and would have influenced Indian monsoon intensity. During the weak LC, there

SECTION 20

#1732765360788

3696-420: Is IC. Occult deposition occurs when mist or air that is highly saturated with water vapour interacts with the leaves of trees or shrubs it passes over. Stratiform or dynamic precipitation occurs as a consequence of slow ascent of air in synoptic systems (on the order of cm/s), such as over surface cold fronts , and over and ahead of warm fronts . Similar ascent is seen around tropical cyclones outside of

3864-410: Is RA, while the coding for rain showers is SHRA. Ice pellets or sleet are a form of precipitation consisting of small, translucent balls of ice. Ice pellets are usually (but not always) smaller than hailstones. They often bounce when they hit the ground, and generally do not freeze into a solid mass unless mixed with freezing rain . The METAR code for ice pellets is PL . Ice pellets form when

4032-482: Is a grassland biome located in semi-arid to semi-humid climate regions of subtropical and tropical latitudes, with rainfall between 750 and 1,270 mm (30 and 50 in) a year. They are widespread on Africa, and are also found in India, the northern parts of South America, Malaysia, and Australia. The humid subtropical climate zone is where winter rainfall (and sometimes snowfall) is associated with large storms that

4200-480: Is a stable cloud deck which tends to form when a cool, stable air mass is trapped underneath a warm air mass. It can also form due to the lifting of advection fog during breezy conditions. There are four main mechanisms for cooling the air to its dew point: adiabatic cooling, conductive cooling, radiational cooling , and evaporative cooling. Adiabatic cooling occurs when air rises and expands. The air can rise due to convection , large-scale atmospheric motions, or

4368-449: Is a time when air quality improves, freshwater quality improves, and vegetation grows significantly. Soil nutrients diminish and erosion increases. Animals have adaptation and survival strategies for the wetter regime. The previous dry season leads to food shortages into the wet season, as the crops have yet to mature. Developing countries have noted that their populations show seasonal weight fluctuations due to food shortages seen before

4536-582: Is accompanied by plentiful precipitation year-round. The Mediterranean climate regime resembles the climate of the lands in the Mediterranean Basin, parts of western North America, parts of western and southern Australia, in southwestern South Africa and in parts of central Chile. The climate is characterized by hot, dry summers and cool, wet winters. A steppe is a dry grassland. Subarctic climates are cold with continuous permafrost and little precipitation. Precipitation, especially rain, has

4704-620: Is added to the air through evaporation, which forces the air temperature to cool to its wet-bulb temperature , or until it reaches saturation. The main ways water vapor is added to the air are: wind convergence into areas of upward motion, precipitation or virga falling from above, daytime heating evaporating water from the surface of oceans, water bodies or wet land, transpiration from plants, cool or dry air moving over warmer water, and lifting air over mountains. Coalescence occurs when water droplets fuse to create larger water droplets, or when water droplets freeze onto an ice crystal, which

4872-437: Is associated with their warm front is often extensive, forced by weak upward vertical motion of air over the frontal boundary which condenses as it cools and produces precipitation within an elongated band, which is wide and stratiform , meaning falling out of nimbostratus clouds. When moist air tries to dislodge an arctic air mass, overrunning snow can result within the poleward side of the elongated precipitation band . In

5040-664: Is directly of "cyclonic" (i.e., monsoon-driven) origin (as opposed to " local convection "). The effects also extend westwards to the Mediterranean, where however the impact of the monsoon is to induce drought via the Rodwell-Hoskins mechanism . Around September, with the sun retreating south, the northern landmass of the Indian subcontinent begins to cool off rapidly, and air pressure begins to build over northern India. The Indian Ocean and its surrounding atmosphere still hold their heat, causing cold wind to sweep down from

5208-403: Is equally distributed through the year. Some areas with pronounced rainy seasons will see a break in rainfall mid-season when the Intertropical Convergence Zone or monsoon trough move poleward of their location during the middle of the warm season. When the wet season occurs during the warm season, or summer, rain falls mainly during the late afternoon and early evening hours. The wet season

Monsoon - Misplaced Pages Continue

5376-416: Is filled by 2.5 cm (0.98 in) of rain, with overflow flowing into the outer cylinder. Plastic gauges have markings on the inner cylinder down to 1 ⁄ 4  mm (0.0098 in) resolution, while metal gauges require use of a stick designed with the appropriate 1 ⁄ 4  mm (0.0098 in) markings. After the inner cylinder is filled, the amount inside is discarded, then filled with

5544-401: Is intermittent and often associated with baroclinic boundaries such as cold fronts , squall lines , and warm fronts. Convective precipitation mostly consist of mesoscale convective systems and they produce torrential rainfalls with thunderstorms, wind damages, and other forms of severe weather events. Orographic precipitation occurs on the windward (upwind) side of mountains and is caused by

5712-759: Is known as the Bergeron process . The fall rate of very small droplets is negligible, hence clouds do not fall out of the sky; precipitation will only occur when these coalesce into larger drops. droplets with different size will have different terminal velocity that cause droplets collision and producing larger droplets, Turbulence will enhance the collision process. As these larger water droplets descend, coalescence continues, so that drops become heavy enough to overcome air resistance and fall as rain. Raindrops have sizes ranging from 5.1 to 20 millimetres (0.20 to 0.79 in) mean diameter, above which they tend to break up. Smaller drops are called cloud droplets, and their shape

5880-445: Is lifted upwards by mountains, surface heating, convergence at the surface, divergence aloft, or from storm-produced outflows at the surface. However the lifting occurs, the air cools due to expansion in lower pressure, and this produces condensation . The monsoon of western Sub-Saharan Africa is the result of the seasonal shifts of the Intertropical Convergence Zone and the great seasonal temperature and humidity differences between

6048-540: Is made, various networks exist across the United States and elsewhere where rainfall measurements can be submitted through the Internet, such as CoCoRAHS or GLOBE . If a network is not available in the area where one lives, the nearest local weather office will likely be interested in the measurement. A concept used in precipitation measurement is the hydrometeor. Any particulates of liquid or solid water in

6216-431: Is possible within a cyclone's comma head and within lake effect precipitation bands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation. On the leeward side of mountains, desert climates can exist due to the dry air caused by compressional heating. Most precipitation occurs within the tropics and is caused by convection . The movement of

6384-637: Is referred to in Britain as the Dimlington Stadial , dated to between 31,000 and 16,000 years ago. The average global temperature about 21,000 years ago was about 6 °C (11 °F) colder than today. According to the United States Geological Survey (USGS), permanent summer ice covered about 8% of Earth's surface and 25% of the land area during the last glacial maximum. The USGS also states that sea level

6552-519: Is spherical. As a raindrop increases in size, its shape becomes more oblate , with its largest cross-section facing the oncoming airflow. Contrary to the cartoon pictures of raindrops, their shape does not resemble a teardrop. Intensity and duration of rainfall are usually inversely related, i.e., high intensity storms are likely to be of short duration and low intensity storms can have a long duration. Rain drops associated with melting hail tend to be larger than other rain drops. The METAR code for rain

6720-593: Is the possibility of reduced intensity of the Indian winter monsoon and strong summer monsoon, because of change in the Indian Ocean dipole due to reduction in net heat input to the Indian Ocean through the Indonesian Throughflow. Thus a better understanding of the possible links between El Niño , Western Pacific Warm Pool, Indonesian Throughflow, wind pattern off western Australia, and ice volume expansion and contraction can be obtained by studying

6888-489: Is the temperature to which a parcel of air must be cooled in order to become saturated, and (unless super-saturation occurs) condenses to water. Water vapor normally begins to condense on condensation nuclei such as dust, ice, and salt in order to form clouds. The cloud condensation nuclei concentration will determine the cloud microphysics. An elevated portion of a frontal zone forces broad areas of lift, which form cloud decks such as altostratus or cirrostratus . Stratus

Monsoon - Misplaced Pages Continue

7056-457: Is the time of year, covering one or more months, when most of the average annual rainfall in a region falls. The term green season is also sometimes used as a euphemism by tourist authorities. Areas with wet seasons are dispersed across portions of the tropics and subtropics. Savanna climates and areas with monsoon regimes have wet summers and dry winters. Tropical rainforests technically do not have dry or wet seasons, since their rainfall

7224-400: Is typically active when freezing rain occurs. A stationary front is often present near the area of freezing rain and serves as the focus for forcing moist air to rise. Provided there is necessary and sufficient atmospheric moisture content, the moisture within the rising air will condense into clouds, namely nimbostratus and cumulonimbus if significant precipitation is involved. Eventually,

7392-678: Is used to refer to the rainy phase of a seasonally changing pattern, although technically there is also a dry phase. The term is also sometimes used to describe locally heavy but short-term rains. The major monsoon systems of the world consist of the West African , Asian– Australian , the North American , and South American monsoons. The term was first used in English in British India and neighboring countries to refer to

7560-675: The Baltic Shield , and in Russia in particular, the LGM ice margin of the Fennoscandian Ice Sheet was highly lobate. The main LGM lobes of Russia followed the Dvina , Vologda and Rybinsk basins respectively. Lobes originated as result of ice following shallow topographic depressions filled with a soft sediment substrate. The northern Ural region was covered in periglacial steppes. Permafrost covered Europe south of

7728-780: The Barents Sea , the Kara Sea , and Novaya Zemlya , ending at the Taymyr Peninsula in what is now northwestern Siberia. Warming commenced in northern latitudes around 20,000 years ago, but it was limited and considerable warming did not take place until around 14,600 year ago. In northwestern Russia , the Fennoscandian ice sheet reached its LGM extent approximately 17,000 years ago, about five thousand years later than in Denmark, Germany and Western Poland. Outside

7896-614: The Cantabrian Mountains of the northwestern corner of the Iberian Peninsula , which in the present day have no permanent glaciers, the LGM led to a local glacial recession as a result of increased aridity caused by the growth of other ice sheets farther to the east and north, which drastically limited annual snowfall over the mountains of northwestern Spain. The Cantabrian alpine glaciers had previously expanded between approximately 60,000 and 40,000 years ago during

8064-621: The Eemian interglacial, suggests that they had an average duration of around 64 years, with the minimum duration being around 50 years and the maximum approximately 80 years, similar to today. A study of marine plankton suggested that the South Asian Monsoon (SAM) strengthened around 5 million years ago. Then, during ice periods, the sea level fell and the Indonesian Seaway closed. When this happened, cold waters in

8232-678: The Great Basin and Mojave Deserts . Similarly, in Asia, the Himalaya mountains create an obstacle to monsoons which leads to extremely high precipitation on the southern side and lower precipitation levels on the northern side. Extratropical cyclones can bring cold and dangerous conditions with heavy rain and snow with winds exceeding 119 km/h (74 mph), (sometimes referred to as windstorms in Europe). The band of precipitation that

8400-719: The Gulf of Oman . Bathymetric data suggests there were two palaeo-basins in the Persian Gulf. The central basin may have approached an area of 20,000 km , comparable at its fullest extent to lakes such as Lake Malawi in Africa. Between 12,000 and 9,000 years ago much of the Gulf's floor was not covered by water, only being flooded by the sea after 8,000 years ago. It is estimated that annual average temperatures in Southern Africa were 6 °C lower than at present during

8568-756: The Hadley circulation during boreal winter. It is associated with the development of the Siberian High and the movement of the heating maxima from the Northern Hemisphere to the Southern Hemisphere. North-easterly winds flow down Southeast Asia, are turned north-westerly/westerly by Borneo topography towards Australia. This forms a cyclonic circulation vortex over Borneo, which together with descending cold surges of winter air from higher latitudes, cause significant weather phenomena in

SECTION 50

#1732765360788

8736-617: The Hex River Mountains , in the Western Cape , block streams and terraces found near the summit of Matroosberg evidences past periglacial activity which likely occurred during the LGM. Palaeoclimatological proxies indicate the region around Boomplaas Cave was wetter, with increased winter precipitation. The region of the Zambezi River catchment was colder relative to present and the local drop in mean temperature

8904-623: The Himalayas and Indo-Gangetic Plain towards the vast spans of the Indian Ocean south of the Deccan peninsula. This is known as the Northeast Monsoon or Retreating Monsoon. While travelling towards the Indian Ocean, the cold dry wind picks up some moisture from the Bay of Bengal and pours it over peninsular India and parts of Sri Lanka . Cities like Chennai , which get less rain from

9072-783: The Sahara and the equatorial Atlantic Ocean. The ITCZ migrates northward from the equatorial Atlantic in February, reaches western Africa on or near June 22, then moves back to the south by October. The dry, northeasterly trade winds , and their more extreme form, the harmattan , are interrupted by the northern shift in the ITCZ and resultant southerly, rain-bearing winds during the summer. The semiarid Sahel and Sudan depend upon this pattern for most of their precipitation. The North American monsoon ( NAM ) occurs from late June or early July into September, originating over Mexico and spreading into

9240-680: The South China Sea led to a timing of the monsoon beginning 15–20 million years ago and linked to early Tibetan uplift. Testing of this hypothesis awaits deep ocean sampling by the Integrated Ocean Drilling Program . The monsoon has varied significantly in strength since this time, largely linked to global climate change , especially the cycle of the Pleistocene ice ages. A study of Asian monsoonal climate cycles from 123,200 to 121,210 years BP, during

9408-645: The Strait of Magellan suggest the peak in glacial surface area was constrained to between 25,200 and 23,100 years ago. There are no agreed dates for the beginning and end of the LGM, and researchers select dates depending on their criteria and the data set consulted. Jennifer French, an archeologist specialising in the European Palaeolithic, dates its onset at 27,500 years ago, with ice sheets at their maximum by around 26,000 years ago and deglaciation commencing between 20,000 and 19,000 years ago. The LGM

9576-459: The electromagnetic spectrum that theory and practice show are related to the occurrence and intensity of precipitation. The sensors are almost exclusively passive, recording what they see, similar to a camera, in contrast to active sensors ( radar , lidar ) that send out a signal and detect its impact on the area being observed. Satellite sensors now in practical use for precipitation fall into two categories. Thermal infrared (IR) sensors record

9744-446: The eyewall , and in comma-head precipitation patterns around mid-latitude cyclones . A wide variety of weather can be found along an occluded front, with thunderstorms possible, but usually their passage is associated with a drying of the air mass. Occluded fronts usually form around mature low-pressure areas. Precipitation may occur on celestial bodies other than Earth. When it gets cold, Mars has precipitation that most likely takes

9912-468: The monsoon trough , or Intertropical Convergence Zone , brings rainy seasons to savannah regions. Precipitation is a major component of the water cycle , and is responsible for depositing fresh water on the planet. Approximately 505,000 cubic kilometres (121,000 cu mi) of water falls as precipitation each year: 398,000 cubic kilometres (95,000 cu mi) over oceans and 107,000 cubic kilometres (26,000 cu mi) over land. Given

10080-616: The return of the westerlies ) is the result of a resurgence of westerly winds from the Atlantic, where they become loaded with wind and rain. These westerly winds are a common phenomenon during the European winter, but they ease as spring approaches in late March and through April and May. The winds pick up again in June, which is why this phenomenon is also referred to as "the return of the westerlies". The rain usually arrives in two waves, at

10248-425: The return period or frequency. The intensity of a storm can be predicted for any return period and storm duration, from charts based on historical data for the location. The term 1 in 10 year storm describes a rainfall event which is rare and is only likely to occur once every 10 years, so it has a 10 percent likelihood any given year. The rainfall will be greater and the flooding will be worse than

SECTION 60

#1732765360788

10416-606: The Andes occupying lacustrine and marine basins where they spread out forming large piedmont glacier lobes . Glaciers extended about 7 km west of the modern Llanquihue Lake , but not more than 2 to 3 km south of it. Nahuel Huapi Lake in Argentina was also glaciated by the same time. Over most of the Chiloé Archipelago , glacier advance peaked 26,000 years ago, forming a long north–south moraine system along

10584-652: The EASM grew in strength, but it has been suggested to have decreased in strength during Heinrich events . The EASM expanded its influence deeper into the interior of Asia as sea levels rose following the LGM; it also underwent a period of intensification during the Middle Holocene, around 6,000 years ago, due to orbital forcing made more intense by the fact that the Sahara at the time was much more vegetated and emitted less dust. This Middle Holocene interval of maximum EASM

10752-738: The Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in), but over land it is only 715 millimetres (28.1 in). Climate classification systems such as the Köppen climate classification system use average annual rainfall to help differentiate between differing climate regimes. Global warming is already causing changes to weather, increasing precipitation in some geographies, and reducing it in others, resulting in additional extreme weather . Precipitation may occur on other celestial bodies. Saturn's largest satellite , Titan , hosts methane precipitation as

10920-610: The Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in). Mechanisms of producing precipitation include convective, stratiform , and orographic rainfall. Convective processes involve strong vertical motions that can cause the overturning of the atmosphere in that location within an hour and cause heavy precipitation, while stratiform processes involve weaker upward motions and less intense precipitation. Precipitation can be divided into three categories, based on whether it falls as liquid water, liquid water that freezes on contact with

11088-598: The East Asian Winter Monsoon (EAWM) became stronger as the subarctic front shifted southwards. An abrupt intensification of the EAWM occurred 5.5 million years ago. The EAWM was still significantly weaker relative to today between 4.3 and 3.8 million years ago but abruptly became more intense around 3.8 million years ago as crustal stretching widened the Tsushima Strait and enabled greater inflow of

11256-454: The GDP and employs 70% of the population) is heavily dependent on the rains, for growing crops especially like cotton , rice , oilseeds and coarse grains. A delay of a few days in the arrival of the monsoon can badly affect the economy, as evidenced in the numerous droughts in India in the 1990s. The monsoon is widely welcomed and appreciated by city-dwellers as well, for it provides relief from

11424-507: The Great Barrier Reef was enhanced due to low atmospheric CO 2 levels. The deep waters of the Indian Ocean were significantly less oxygenated during the LGM compared to the Middle Holocene. The deep South Indian Ocean in particular was an enormous carbon sink, partially explaining the very low p CO 2 of the LGM. The intermediate waters of the southeastern Arabian Sea were poorly ventilated relative to today because of

11592-603: The Holocene. In Greece , steppe vegetation predominated. Megafaunal abundance in Europe peaked around 27,000 and 21,000 BP; this bountifulness was attributable to the cold stadial climate. In Greenland, the difference between LGM temperatures and present temperatures was twice as great during winter as during summer. Greenhouse gas and insolation forcings dominated temperature changes in northern Greenland, whereas Atlantic meridional overturning circulation (AMOC) variability

11760-535: The IR data. The second category of sensor channels is in the microwave part of the electromagnetic spectrum. The frequencies in use range from about 10 gigahertz to a few hundred GHz. Channels up to about 37 GHz primarily provide information on the liquid hydrometeors (rain and drizzle) in the lower parts of clouds, with larger amounts of liquid emitting higher amounts of microwave radiant energy . Channels above 37 GHz display emission signals, but are dominated by

11928-678: The LGM except in transient intervals around 23,200 and 22,300 BP. In the western South Atlantic , where Antarctic Intermediate Water forms, sinking particle flux was heightened as a result of increased dust flux during the LGM and sustained export productivity. The increased sinking particle flux removed neodymium from shallow waters, producing an isotopic ratio change. On the Island of Hawaii , geologists have long recognized deposits formed by glaciers on Mauna Kea during recent ice ages. The latest work indicates that deposits of three glacial episodes since 150,000 to 200,000 years ago are preserved on

12096-492: The LGM, 21,000 years ago, the sea level was about 125 meters (about 410 feet) lower than it is today. Across most of the globe, the hydrological cycle slowed down, explaining increased aridity in many regions of the world. In Africa and the Middle East, many smaller mountain glaciers formed, and the Sahara and other sandy deserts were greatly expanded in extent. The Atlantic deep sea sediment core V22-196, extracted off

12264-702: The Last Glacial Maximum. This temperature drop alone would however not have been enough to generate widespread glaciation or permafrost in the Drakensberg Mountains or the Lesotho Highlands . Seasonal freezing of the ground in the Lesotho Highlands might have reached depths of 2 meters or more below the surface. A few small glaciers did however develop during the LGM, in particular in south-facing slopes. In

12432-843: The Late Holocene, significant glacial accumulation in the Himalayas still occurred due to cold temperatures brought by westerlies from the west. During the Middle Miocene , the July ITCZ, the zone of rainfall maximum, migrated northwards, increasing precipitation over southern China during the East Asian Summer Monsoon (EASM) while making Indochina drier. During the Late Miocene Global Cooling (LMCG), from 7.9 to 5.8 million years ago,

12600-688: The Laurentide Ice Sheet reached 3.2 km in height around Keewatin Dome and about 1.7-2.1 km along the Plains divide. In addition to the large Cordilleran Ice Sheet in Canada and Montana , alpine glaciers advanced and (in some locations) ice caps covered much of the Rocky and Sierra Nevada Mountains further south. Latitudinal gradients were so sharp that permafrost did not reach far south of

12768-705: The North Atlantic was reduced, as measured by the increased proportion of radiogenic isotopes in neodymium isotope ratios. There is controversy whether upwelling off the Moroccan coast was stronger during the LGM compared to today. Though coccolith size increases in Calcidiscus leptoporus suggest stronger trade winds during the LGM caused there to be increased coastal upwelling of the northwestern coast of Africa, planktonic foraminiferal δ C records show upwelling and primary productivity were not enhanced during

12936-465: The North Atlantic were better ventilated during the LGM by Glacial North Atlantic Intermediate Water (GNAIW) relative to its present-day ventilation by upper North Atlantic Deep Water (NADW). GNAIW was nutrient poor compared to present day upper NADW. Below GNAIW, southern source bottom water that was very rich in nutrients filled the deep North Atlantic. Due to the presence of immense ice sheets in Europe and North America, continental weathering flux into

13104-665: The Northern Hemisphere, poleward is towards the North Pole, or north. Within the Southern Hemisphere, poleward is towards the South Pole, or south. Southwest of extratropical cyclones, curved cyclonic flow bringing cold air across the relatively warm water bodies can lead to narrow lake-effect snow bands. Those bands bring strong localized snowfall which can be understood as follows: Large water bodies such as lakes efficiently store heat that results in significant temperature differences (larger than 13 °C or 23 °F) between

13272-450: The Pacific were impeded from flowing into the Indian Ocean. It is believed that the resulting increase in sea surface temperatures in the Indian Ocean increased the intensity of monsoons. In 2018, a study of the SAM's variability over the past million years found that precipitation resulting from the monsoon was significantly reduced during glacial periods compared to interglacial periods like

13440-615: The Southwest Monsoon first hits the Western Ghats of the coastal state of Kerala , India, thus making this area the first state in India to receive rain from the Southwest Monsoon. This branch of the monsoon moves northwards along the Western Ghats ( Konkan and Goa ) with precipitation on coastal areas, west of the Western Ghats. The eastern areas of the Western Ghats do not receive much rain from this monsoon as

13608-533: The Southwest Monsoon, receive rain from this Monsoon. About 50% to 60% of the rain received by the state of Tamil Nadu is from the Northeast Monsoon. In Southern Asia, the northeastern monsoons take place from October to December when the surface high-pressure system is strongest. The jet stream in this region splits into the southern subtropical jet and the polar jet. The subtropical flow directs northeasterly winds to blow across southern Asia, creating dry air streams which produce clear skies over India. Meanwhile,

13776-1000: The action of solid hydrometeors (snow, graupel, etc.) to scatter microwave radiant energy. Satellites such as the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission employ microwave sensors to form precipitation estimates. Additional sensor channels and products have been demonstrated to provide additional useful information including visible channels, additional IR channels, water vapor channels and atmospheric sounding retrievals. However, most precipitation data sets in current use do not employ these data sources. The IR estimates have rather low skill at short time and space scales, but are available very frequently (15 minutes or more often) from satellites in geosynchronous Earth orbit. IR works best in cases of deep, vigorous convection—such as

13944-414: The air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers . Moisture that is lifted or otherwise forced to rise over a layer of sub-freezing air at the surface may be condensed by the low temperature into clouds and rain. This process

14112-452: The air temperature remains relatively stable for two reasons: water has a relatively high heat capacity (3.9 to 4.2 J g K), and because both conduction and convection will equilibrate a hot or cold surface with deeper water (up to 50 metres). In contrast, dirt, sand, and rocks have lower heat capacities (0.19 to 0.35 J g K), and they can only transmit heat into the earth by conduction and not by convection. Therefore, bodies of water stay at

14280-580: The arrival at the Eastern Himalayas, the winds turns towards the west, travelling over the Indo-Gangetic Plain at a rate of roughly 1–2 weeks per state, pouring rain all along its way. June 1 is regarded as the date of onset of the monsoon in India, as indicated by the arrival of the monsoon in the southernmost state of Kerala. The monsoon accounts for nearly 80% of the rainfall in India. Indian agriculture (which accounts for 25% of

14448-416: The atmosphere . The massive sheets of ice locked away water, lowering the sea level, exposing continental shelves , joining land masses together, and creating extensive coastal plains . The ice sheets also changed the atmospheric circulation, causing the northern Pacific and Atlantic oceans to cool and produce more clouds, which amplified the global cooling as the clouds reflected even more sunlight. During

14616-497: The atmosphere are known as hydrometeors. Formations due to condensation, such as clouds, haze , fog, and mist, are composed of hydrometeors. All precipitation types are made up of hydrometeors by definition, including virga , which is precipitation which evaporates before reaching the ground. Particles blown from the Earth's surface by wind, such as blowing snow and blowing sea spray, are also hydrometeors , as are hail and snow . Although surface precipitation gauges are considered

14784-413: The atmosphere due to their mass, and may collide and stick together in clusters, or aggregates. These aggregates are snowflakes, and are usually the type of ice particle that falls to the ground. Guinness World Records list the world's largest snowflakes as those of January 1887 at Fort Keogh , Montana; allegedly one measured 38 cm (15 in) wide. The exact details of the sticking mechanism remain

14952-484: The average time between observations exceeds three hours. This several-hour interval is insufficient to adequately document precipitation because of the transient nature of most precipitation systems as well as the inability of a single satellite to appropriately capture the typical daily cycle of precipitation at a given location. Since the late 1990s, several algorithms have been developed to combine precipitation data from multiple satellites' sensors, seeking to emphasize

15120-506: The beginning of June, and again in mid- to late June. The European monsoon is not a monsoon in the traditional sense in that it doesn't meet all the requirements to be classified as such. Instead, the return of the westerlies is more regarded as a conveyor belt that delivers a series of low-pressure centres to Western Europe where they create unsettled weather. These storms generally feature significantly lower-than-average temperatures, fierce rain or hail, thunder, and strong winds. The return of

15288-411: The behaviour of the LC during Quaternary at close stratigraphic intervals. The South American summer monsoon (SASM) is known to have become weakened during Dansgaard–Oeschger events. The SASM has been suggested to have been enhanced during Heinrich events. Monsoons were once considered as a large-scale sea breeze caused by higher temperature over land than in the ocean. This is no longer considered as

15456-531: The best analyses of gauge data take two months or more after the observation time to undergo the necessary transmission, assembly, processing and quality control. Thus, precipitation estimates that include gauge data tend to be produced further after the observation time than the no-gauge estimates. As a result, while estimates that include gauge data may provide a more accurate depiction of the "true" precipitation, they are generally not suited for real- or near-real-time applications. The work described has resulted in

15624-420: The best instantaneous satellite estimate. In either case, the less-emphasized goal is also considered desirable. One key aspect of multi-satellite studies is the ability to include even a small amount of surface gauge data, which can be very useful for controlling the biases that are endemic to satellite estimates. The difficulties in using gauge data are that 1) their availability is limited, as noted above, and 2)

15792-919: The best known being Lake Bonneville in Utah . This also occurred in Afghanistan and Iran , where a major lake formed in the Dasht-e Kavir . In Australia , shifting sand dunes covered half the continent, while the Chaco and Pampas in South America became similarly dry. Present-day subtropical regions also lost most of their forest cover, notably in eastern Australia, the Atlantic Forest of Brazil , and southern China , where open woodland became dominant due to much drier conditions. In northern China – unglaciated despite its cold climate –

15960-459: The big seasonal winds blowing from the Bay of Bengal and Arabian Sea in the southwest bringing heavy rainfall to the area. The etymology of the word monsoon is not wholly certain. The English monsoon came from Portuguese monção ultimately from Arabic موسم ( mawsim , "season"), "perhaps partly via early modern Dutch monson ". Strengthening of the Asian monsoon has been linked to

16128-668: The cause and the monsoon is now considered a planetary-scale phenomenon involving the annual migration of the Intertropical Convergence Zone between its northern and southern limits. The limits of the ITCZ vary according to the land–sea heating contrast and it is thought that the northern extent of the monsoon in South Asia is influenced by the high Tibetan Plateau. These temperature imbalances happen because oceans and land absorb heat in different ways. Over oceans,

16296-532: The changing temperature and humidity within the atmosphere through which they fall on their way to the ground. The METAR code for snow is SN, while snow showers are coded SHSN. Diamond dust, also known as ice needles or ice crystals, forms at temperatures approaching −40 °C (−40 °F) due to air with slightly higher moisture from aloft mixing with colder, surface-based air. They are made of simple ice crystals, hexagonal in shape. The METAR identifier for diamond dust within international hourly weather reports

16464-661: The climax of summer heat in June. However, the roads take a battering every year. Often houses and streets are waterlogged and slums are flooded despite drainage systems. A lack of city infrastructure coupled with changing climate patterns causes severe economic loss including damage to property and loss of lives, as evidenced in the 2005 flooding in Mumbai that brought the city to a standstill. Bangladesh and certain regions of India like Assam and West Bengal , also frequently experience heavy floods during this season. Recently, areas in India that used to receive scanty rainfall throughout

16632-447: The cloud droplets will grow large enough to form raindrops and descend toward the Earth where they will freeze on contact with exposed objects. Where relatively warm water bodies are present, for example due to water evaporation from lakes, lake-effect snowfall becomes a concern downwind of the warm lakes within the cold cyclonic flow around the backside of extratropical cyclones . Lake-effect snowfall can be locally heavy. Thundersnow

16800-509: The coast of Senegal, shows a major southward expansion of the Sahara. The Persian Gulf averages about 35 metres in depth and the seabed between Abu Dhabi and Qatar is even shallower, being mostly less than 15 metres deep. For thousands of years the Ur-Shatt (a confluence of the Tigris - Euphrates Rivers ) provided fresh water to the Gulf, as it flowed through the Strait of Hormuz into

16968-462: The coding of GS, which is short for the French word grésil. Stones just larger than golf ball-sized are one of the most frequently reported hail sizes. Hailstones can grow to 15 centimetres (6 in) and weigh more than 500 grams (1 lb). In large hailstones, latent heat released by further freezing may melt the outer shell of the hailstone. The hailstone then may undergo 'wet growth', where

17136-399: The colder months, the cycle is reversed. Then the land cools faster than the oceans and the air over the land has higher pressure than air over the ocean. This causes the air over the land to flow to the ocean. When humid air rises over the ocean, it cools, and this causes precipitation over the oceans. (The cool air then flows towards the land to complete the cycle.) Most summer monsoons have

17304-673: The continents: the Indonesian islands as far east as Borneo and Bali were connected to the Asian continent in a landmass called Sundaland . Palawan was also part of Sundaland, while the rest of the Philippine Islands formed one large island separated from the continent only by the Sibutu Passage and the Mindoro Strait . The environment along the coast of South China was not very different from that of

17472-424: The deeper the clouds get, and the greater the precipitation rate becomes. In mountainous areas, heavy snowfall accumulates when air is forced to ascend the mountains and squeeze out precipitation along their windward slopes, which in cold conditions, falls in the form of snow. Because of the ruggedness of terrain, forecasting the location of heavy snowfall remains a significant challenge. The wet, or rainy, season

17640-531: The descending and generally warming, leeward side where a rain shadow is observed. In Hawaii , Mount Waiʻaleʻale , on the island of Kauai, is notable for its extreme rainfall, as it has the second-highest average annual rainfall on Earth, with 12,000 millimetres (460 in). Storm systems affect the state with heavy rains between October and March. Local climates vary considerably on each island due to their topography, divisible into windward ( Koʻolau ) and leeward ( Kona ) regions based upon location relative to

17808-636: The east and west extremities of the Sundaland shelf. Only in Central America and the Chocó region of Colombia did tropical rainforests remain substantially intact – probably due to the extraordinarily heavy rainfall of these regions. Most of the world's deserts expanded. Exceptions were in what is the present-day Western United States , where changes in the jet stream brought heavy rain to areas that are now desert and large pluvial lakes formed,

17976-543: The eastern coast of Chiloé Island (41.5–43° S). By that time the glaciation at the latitude of Chiloé was of ice sheet type contrasting to the valley glaciation found further north in Chile. Despite glacier advances much of the area west of Llanquihue Lake was still ice-free during the Last Glacial Maximum. During the coldest period of the Last Glacial Maximum vegetation at this location was dominated by Alpine herbs in wide open surfaces. The global warming that followed caused

18144-548: The equator in Colombia are amongst the wettest places on Earth. North and south of this are regions of descending air that form subtropical ridges where precipitation is low; the land surface underneath these ridges is usually arid, and these regions make up most of the Earth's deserts. An exception to this rule is in Hawaii, where upslope flow due to the trade winds lead to one of the wettest locations on Earth. Otherwise,

18312-458: The first harvest, which occurs late in the wet season. Tropical cyclones, a source of very heavy rainfall, consist of large air masses several hundred miles across with low pressure at the centre and with winds blowing inward towards the centre in either a clockwise direction (southern hemisphere) or counterclockwise (northern hemisphere). Although cyclones can take an enormous toll in lives and personal property, they may be important factors in

18480-680: The flow of the Westerlies into the Rocky Mountains lead to the wettest, and at elevation snowiest, locations within North America. In Asia during the wet season, the flow of moist air into the Himalayas leads to some of the greatest rainfall amounts measured on Earth in northeast India. The standard way of measuring rainfall or snowfall is the standard rain gauge, which can be found in 10 cm (3.9 in) plastic and 20 cm (7.9 in) metal varieties. The inner cylinder

18648-579: The form of ice needles, rather than rain or snow. Convective rain , or showery precipitation, occurs from convective clouds, e.g. cumulonimbus or cumulus congestus . It falls as showers with rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited horizontal extent. Most precipitation in the tropics appears to be convective; however, it has been suggested that stratiform precipitation also occurs. Graupel and hail indicate convection. In mid-latitudes, convective precipitation

18816-400: The funnel needs to be removed before the event begins. For those looking to measure rainfall the most inexpensively, a can that is cylindrical with straight sides will act as a rain gauge if left out in the open, but its accuracy will depend on what ruler is used to measure the rain with. Any of the above rain gauges can be made at home, with enough know-how . When a precipitation measurement

18984-425: The gauge. Once the snowfall/ice is finished accumulating, or as 30 cm (12 in) is approached, one can either bring it inside to melt, or use lukewarm water to fill the inner cylinder with in order to melt the frozen precipitation in the outer cylinder, keeping track of the warm fluid added, which is subsequently subtracted from the overall total once all the ice/snow is melted. Other types of gauges include

19152-463: The hailstones to the upper part of the cloud. The updraft dissipates and the hailstones fall down, back into the updraft, and are lifted again. Hail has a diameter of 5 millimetres (0.20 in) or more. Within METAR code, GR is used to indicate larger hail, of a diameter of at least 6.4 millimetres (0.25 in). GR is derived from the French word grêle. Smaller-sized hail, as well as snow pellets, use

19320-435: The higher mountains. Windward sides face the east to northeast trade winds and receive much more rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover. In South America, the Andes mountain range blocks Pacific moisture that arrives in that continent, resulting in a desertlike climate just downwind across western Argentina. The Sierra Nevada range creates the same effect in North America forming

19488-459: The hot summers. This causes a low pressure area over the northern and central Indian subcontinent. To fill this void, the moisture-laden winds from the Indian Ocean rush into the subcontinent. These winds, rich in moisture, are drawn towards the Himalayas . The Himalayas act like a high wall, blocking the winds from passing into Central Asia, and forcing them to rise. As the clouds rise, their temperature drops, and precipitation occurs . Some areas of

19656-479: The ice crystals the crystals are able to grow to hundreds of micrometers in size at the expense of the water droplets. This process is known as the Wegener–Bergeron–Findeisen process . The corresponding depletion of water vapor causes the droplets to evaporate, meaning that the ice crystals grow at the droplets' expense. These large crystals are an efficient source of precipitation, since they fall through

19824-710: The ice sheet down to as far south as present-day Szeged in Southern Hungary. Ice covered the whole of Iceland . In addition, ice covered Ireland along with roughly the northern half of the British Isles with the southern boundary of the ice sheet running approximately from the south of Wales to the north east of England, and then across the now submerged land of Doggerland to Denmark . Central Europe had isolated pockets of relative warmth corresponding to hydrothermally active areas, which served as refugia for taxa not adapted to extremely cold climates. In

19992-421: The ice sheets except at high elevations. Glaciers forced the early human populations who had originally migrated from northeast Siberia into refugia , reshaping their genetic variation by mutation and drift . This phenomenon established the older haplogroups found among Native Americans , and later migrations are responsible for northern North American haplogroups. In southeastern North America, between

20160-454: The liquid outer shell collects other smaller hailstones. The hailstone gains an ice layer and grows increasingly larger with each ascent. Once a hailstone becomes too heavy to be supported by the storm's updraft, it falls from the cloud. Snow crystals form when tiny supercooled cloud droplets (about 10 μm in diameter) freeze. Once a droplet has frozen, it grows in the supersaturated environment. Because water droplets are more numerous than

20328-513: The monsoon is not a simple response to heating but a more complex interaction of topography, wind and sea, as demonstrated by its abrupt rather than gradual withdrawal from the region. The Australian monsoon (the "Wet") occurs in the southern summer when the monsoon trough develops over Northern Australia . Over three-quarters of annual rainfall in Northern Australia falls during this time. The European Monsoon (more commonly known as

20496-573: The north between approximately 8,000 and 4,000 BP, and most recently retreated southward once more between 4,000 and 0 BP. The January ITCZ migrated further south to its present location during the Middle Miocene, strengthening the summer monsoon of Australia that had previously been weaker. Five episodes during the Quaternary at 2.22 Ma (PL-1), 1.83 Ma (PL-2), 0.68 Ma (PL-3), 0.45 Ma (PL-4) and 0.04 Ma (PL-5) were identified which showed

20664-412: The north, in the dry Andes of Central and the Last Glacial Maximum is associated with increased humidity and the verified advance of at least some mountain glaciers. Montane glaciers in the northern Andes reached their peak extent approximately 27,000 years ago. In northwestern Argentina, pollen deposits record the altitudinal descent of the treeline during the LGM. Amazonia was much drier than in

20832-413: The ocean to the land, bringing moist air inland. This moist air rises to a higher altitude over land and then it flows back toward the ocean (thus completing the cycle). However, when the air rises, and while it is still over the land, the air cools . This decreases the air's ability to hold water , and this causes precipitation over the land. This is why summer monsoons cause so much rain over land. In

21000-428: The past. During the Last Glacial Maximum, much of the world was cold, dry, and inhospitable, with frequent storms and a dust-laden atmosphere. The dustiness of the atmosphere is a prominent feature in ice cores; dust levels were as much as 20 to 25 times greater than they are in the present. This was probably due to a number of factors: reduced vegetation, stronger global winds, and less precipitation to clear dust from

21168-654: The persistence of rainforests in eastern Australia at this time. Rivers maintained their sinuous form in southeastern Australia and there was increased aeolian deposition of sediment in compared to today. The Flinders Ranges likewise experienced humid conditions. In southwestern Western Australia, forests disappeared during the LGM. Between Sahul and Sundaland – a peninsula of South East Asia that comprised present-day Malaysia and western and northern Indonesia – there remained an archipelago of islands known as Wallacea . The water gaps between these islands, Sahul and Sundaland were considerably narrower and fewer in number than in

21336-424: The popular wedge gauge (the cheapest rain gauge and most fragile), the tipping bucket rain gauge , and the weighing rain gauge . The wedge and tipping bucket gauges have problems with snow. Attempts to compensate for snow/ice by warming the tipping bucket meet with limited success, since snow may sublimate if the gauge is kept much above freezing. Weighing gauges with antifreeze should do fine with snow, but again,

21504-438: The precipitation regimes of places they impact, as they may bring much-needed precipitation to otherwise dry regions. Areas in their path can receive a year's worth of rainfall from a tropical cyclone passage. On the large scale, the highest precipitation amounts outside topography fall in the tropics, closely tied to the Intertropical Convergence Zone , itself the ascending branch of the Hadley cell . Mountainous locales near

21672-861: The present day, featuring moist subtropical evergreen forests, despite sea levels in the South China Sea being about 100 metres lower than the present day. The Australian mainland, New Guinea , Tasmania and many smaller islands comprised a single land mass. This continent is now referred to sometimes as Sahul . In the Bonaparte Gulf of northwestern Australia, sea levels were about 125 metres lower than present. Interior Australia saw widespread aridity, evidenced by extensive dune activity and falling lake levels. Eastern Australia experienced two nadirs in temperature. Lacustrine sediments from North Stradbroke Island in coastal Queensland indicated humid conditions. Data from Little Llangothlin Lagoon likewise indicate

21840-569: The present day. The two main islands of New Zealand, along with associated smaller islands, were joined as one landmass. Virtually all of the Southern Alps were under permanent ice cover, with alpine glaciers extending from them into much of the surrounding high country . Northern Europe was largely covered by ice, with the southern boundary of the ice sheets passing through Germany and Poland. This ice extended northward to cover Svalbard and Franz Josef Land and northeastward to occupy

22008-535: The present day. The Indian Summer Monsoon (ISM) underwent several intensifications during the warming following the Last Glacial Maximum, specifically during the time intervals corresponding to 16,100–14,600 BP, 13,600–13,000 BP, and 12,400–10,400 BP as indicated by vegetation changes in the Tibetan Plateau displaying increases in humidity brought by an intensifying ISM. Though the ISM was relatively weak for much of

22176-557: The present, with flora diminished to almost the same degree as in glaciated areas of Europe and North America. Even in less affected regions, rainforest cover was greatly diminished, especially in West Africa where a few refugia were surrounded by tropical grasslands . The Amazon rainforest was split into two large blocks by extensive savanna , and the tropical rainforests of Southeast Asia probably were similarly affected, with deciduous forests expanding in their place except on

22344-536: The present. δ D values from plant waxes from the LGM are significantly more enriched than those in the present and those dating back to MIS 3, evidencing this increased aridity. Eastern Brazil was also affected; the site of Guanambi in Bahia was much drier than today. AMOC was weaker and more shallow during the LGM. Sea surface temperatures in the western subtropical gyre of the North Atlantic were around 5 °C colder compared to today. Intermediate depth waters of

22512-581: The primary types are A, tropical; B, dry; C, mild mid-latitude; D, cold mid-latitude; and E, polar. The five primary classifications can be further divided into secondary classifications such as rain forest , monsoon , tropical savanna , humid subtropical , humid continental , oceanic climate , Mediterranean climate , steppe , subarctic climate , tundra , polar ice cap , and desert . Rain forests are characterized by high rainfall, with definitions setting minimum normal annual rainfall between 1,750 and 2,000 mm (69 and 79 in). A tropical savanna

22680-510: The region. Examples are the formation of a rare low-latitude tropical storm in 2001, Tropical Storm Vamei , and the devastating flood of Jakarta in 2007. The onset of the monsoon over Australia tends to follow the heating maxima down Vietnam and the Malay Peninsula (September), to Sumatra , Borneo and the Philippines (October), to Java , Sulawesi (November), Irian Jaya and northern Australia (December, January). However,

22848-406: The remaining rainfall in the outer cylinder until all the fluid in the outer cylinder is gone, adding to the overall total until the outer cylinder is empty. These gauges are used in the winter by removing the funnel and inner cylinder and allowing snow and freezing rain to collect inside the outer cylinder. Some add anti-freeze to their gauge so they do not have to melt the snow or ice that falls into

23016-413: The result at the surface. A temperature profile showing a warm layer above the ground is most likely to be found in advance of a warm front during the cold season, but can occasionally be found behind a passing cold front . Like other precipitation, hail forms in storm clouds when supercooled water droplets freeze on contact with condensation nuclei , such as dust or dirt. The storm's updraft blows

23184-438: The rising air motion of a large-scale flow of moist air across the mountain ridge, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds ), a more moist climate usually prevails on the windward side of a mountain than on the leeward or downwind side. Moisture is removed by orographic lift, leaving drier air (see katabatic wind ) on

23352-572: The shutting down of the Oyashio Current and the presence of large east–west mountain ranges were secondary factors that prevented the development of continental glaciation in Asia . All over the world, climates at the Last Glacial Maximum were cooler and almost everywhere drier. In extreme cases, such as South Australia and the Sahel , rainfall could have been diminished by up to 90% compared to

23520-535: The southern Appalachian Mountains and the Atlantic Ocean, there was an enclave of unusually warm climate. In the Southern Hemisphere, the Patagonian Ice Sheet covered the whole southern third of Chile and adjacent areas of Argentina. On the western side of the Andes the ice sheet reached sea level as far north as in the 41 degrees south at Chacao Channel . The western coast of Patagonia

23688-502: The southern hemisphere commenced 33,000 years ago and maximum coverage has been estimated to have occurred sometime between 26,500 years ago and 20,000 years ago. After this, deglaciation caused an abrupt rise in sea level. Decline of the West Antarctica ice sheet occurred between 14,000 and 15,000 years ago, consistent with evidence for another abrupt rise in the sea level about 14,500 years ago. Glacier fluctuations around

23856-559: The southwest United States by mid-July. It affects Mexico along the Sierra Madre Occidental as well as Arizona , New Mexico , Nevada , Utah , Colorado , West Texas and California . It pushes as far west as the Peninsular Ranges and Transverse Ranges of Southern California, but rarely reaches the coastal strip (a wall of desert thunderstorms only a half-hour's drive away is a common summer sight from

24024-455: The standard for measuring precipitation, there are many areas in which their use is not feasible. This includes the vast expanses of ocean and remote land areas. In other cases, social, technical or administrative issues prevent the dissemination of gauge observations. As a result, the modern global record of precipitation largely depends on satellite observations. Satellite sensors work by remotely sensing precipitation—recording various parts of

24192-565: The strengths and minimize the weaknesses of the individual input data sets. The goal is to provide "best" estimates of precipitation on a uniform time/space grid, usually for as much of the globe as possible. In some cases the long-term homogeneity of the dataset is emphasized, which is the Climate Data Record standard. Alternatively, the High Resolution Precipitation Product aims to produce

24360-562: The subcontinent receive up to 10,000 mm (390 in) of rain annually. The southwest monsoon is generally expected to begin around the beginning of June and fade away by the end of September. The moisture-laden winds on reaching the southernmost point of the Indian Peninsula , due to its topography, become divided into two parts: the Arabian Sea Branch and the Bay of Bengal Branch . The Arabian Sea Branch of

24528-546: The summer monsoon shifts through a series of dry and rainy phases as the rain belt moves northward, beginning over Indochina and the South China Sea (May), to the Yangtze River Basin and Japan (June) and finally to northern China and Korea (July). When the monsoon ends in August, the rain belt moves back to southern China. The rainy season occurs from September to February and it is a major source of energy for

24696-686: The sunny skies along the coast during the monsoon). The North American monsoon is known to many as the Summer , Southwest , Mexican or Arizona monsoon. It is also sometimes called the Desert monsoon as a large part of the affected area are the Mojave and Sonoran deserts . However, it is controversial whether the North and South American weather patterns with incomplete wind reversal should be counted as true monsoons. The Asian monsoons may be classified into

24864-424: The surface, or ice. Mixtures of different types of precipitation, including types in different categories, can fall simultaneously. Liquid forms of precipitation include rain and drizzle. Rain or drizzle that freezes on contact within a subfreezing air mass is called "freezing rain" or "freezing drizzle". Frozen forms of precipitation include snow, ice needles , ice pellets , hail , and graupel . The dew point

25032-437: The tropics—and becomes progressively less useful in areas where stratiform (layered) precipitation dominates, especially in mid- and high-latitude regions. The more-direct physical connection between hydrometeors and microwave channels gives the microwave estimates greater skill on short time and space scales than is true for IR. However, microwave sensors fly only on low Earth orbit satellites, and there are few enough of them that

25200-666: The uplift of the Tibetan Plateau after the collision of the Indian subcontinent and Asia around 50 million years ago. Because of studies of records from the Arabian Sea and that of the wind-blown dust in the Loess Plateau of China, many geologists believe the monsoon first became strong around 8 million years ago. More recently, studies of plant fossils in China and new long-duration sediment records from

25368-569: The volcano. Glacial moraines on the volcano formed about 70,000 years ago and from about 40,000 to 13,000 years ago. If glacial deposits were formed on Mauna Loa , they have long since been buried by younger lava flows. Low sea surface temperature (SST) and sea surface salinity (SSS) in the East China Sea during the LGM suggests the Kuroshio Current was reduced in strength relative to the present. Abyssal Pacific overturning

25536-709: The warm Tsushima Current into the Sea of Japan. Circa 3.0 million years ago, the EAWM became more stable, having previously been more variable and inconsistent, in addition to being enhanced further amidst a period of global cooling and sea level fall. The EASM was weaker during cold intervals of glacial periods such as the Last Glacial Maximum (LGM) and stronger during interglacials and warm intervals of glacial periods. Another EAWM intensification event occurred 2.6 million years ago, followed by yet another one around 1.0 million years ago. During Dansgaard–Oeschger events ,

25704-405: The water surface and the air above. Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds (see satellite picture) which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height,

25872-554: The westerlies affects Europe's Northern Atlantic coastline, more precisely Ireland, Great Britain, the Benelux countries , western Germany, northern France and parts of Scandinavia. Precipitation In meteorology , precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle , rain , sleet , snow , ice pellets , graupel and hail . Precipitation occurs when

26040-447: The westerlies steer from west to east. Most summer rainfall occurs during thunderstorms and from occasional tropical cyclones. Humid subtropical climates lie on the east side continents, roughly between latitudes 20° and 40° degrees from the equator. An oceanic (or maritime) climate is typically found along the west coasts at the middle latitudes of all the world's continents, bordering cool oceans, as well as southeastern Australia, and

26208-548: The wet season. Animals have adaptation and survival strategies for the wetter regime. The previous dry season leads to food shortages into the wet season, as the crops have yet to mature. Developing countries have noted that their populations show seasonal weight fluctuations due to food shortages seen before the first harvest, which occurs late in the wet season. Last Glacial Maximum Based on changes in position of ice sheet margins dated via terrestrial cosmogenic nuclides and radiocarbon dating , growth of ice sheets in

26376-656: The wind does not cross the Western Ghats. The Bay of Bengal Branch of Southwest Monsoon flows over the Bay of Bengal heading towards north-east India and Bengal , picking up more moisture from the Bay of Bengal. The winds arrive at the Eastern Himalayas with large amounts of rain. Mawsynram , situated on the southern slopes of the Khasi Hills in Meghalaya , India, is one of the wettest places on Earth. After

26544-438: The worst storm expected in any single year. The term 1 in 100 year storm describes a rainfall event which is extremely rare and which will occur with a likelihood of only once in a century, so has a 1 percent likelihood in any given year. The rainfall will be extreme and flooding to be worse than a 1 in 10 year event. As with all probability events, it is possible though unlikely to have two "1 in 100 Year Storms" in

26712-407: The year, like the Thar Desert , have surprisingly ended up receiving floods due to the prolonged monsoon season. The influence of the Southwest Monsoon is felt as far north as in China's Xinjiang . It is estimated that about 70% of all precipitation in the central part of the Tian Shan Mountains falls during the three summer months, when the region is under the monsoon influence; about 70% of that

26880-438: Was a pocket of relative warmth. Following a preceding period of relative retreat from 52,000 to 40,000 years ago, the Laurentide Ice Sheet grew rapidly at the onset of the LGM until it covered essentially all of Canada east of the Rocky Mountains and extended roughly to the Missouri and Ohio Rivers , and eastward to Manhattan , reaching a total maximum volume of around 26.5 to 37 million cubic kilometres. At its peak,

27048-688: Was about 125 meters (410 ft) lower than in present times (2012). When comparing to the present, the average global temperature was 15 °C (59 °F) for the 2013–2017 period. As of 2012 about 3.1% of Earth's surface and 10.7% of the land area is covered in year-round ice. Carbon sequestration in the highly stratified and productive Southern Ocean was essential in producing the LGM. The formation of an ice sheet or ice cap requires both prolonged cold and precipitation ( snow ). Hence, despite having temperatures similar to those of glaciated areas in North America and Europe , East Asia remained unglaciated except at higher elevations. This difference

27216-468: Was associated with an expansion of temperate deciduous forest steppe and temperate mixed forest steppe in northern China. By around 5,000 to 4,500 BP, the East Asian monsoon's strength began to wane, weakening from that point until the present day. A particularly notable weakening took place ~3,000 BP. The location of the EASM shifted multiple times over the course of the Holocene: first, it moved southward between 12,000 and 8,000 BP, followed by an expansion to

27384-399: Was because the ice sheets in Europe produced extensive anticyclones above them. These anticyclones generated air masses that were so dry on reaching Siberia and Manchuria that precipitation sufficient for the formation of glaciers could never occur (except in Kamchatka where these westerly winds lifted moisture from the Sea of Japan ). The relative warmth of the Pacific Ocean due to

27552-431: Was largely glaciated, but some authors have pointed out the possible existence of ice-free refugia for some plant species. On the eastern side of the Andes, glacier lobes occupied the depressions of Seno Skyring , Seno Otway , Inútil Bay , and Beagle Channel . On the Straits of Magellan, ice reached as far as Segunda Angostura . During the LGM, valley glaciers in the southern Andes (38–43° S) merged and descended from

27720-598: Was seasonally uniform. On the island of Mauritius in the Mascarenhas Archipelago , open wet forest vegetation dominated, contrasting with the dominantly closed-stratified-tall-forest state of Holocene Mauritian forests. There were ice sheets in modern Tibet (although scientists continue to debate the extent to which the Tibetan Plateau was covered with ice) as well as in Baltistan and Ladakh . In Southeast Asia , many smaller mountain glaciers formed, and permafrost covered Asia as far south as Beijing . Because of lowered sea levels, many of today's islands were joined to

27888-444: Was similar in spatial extent. The outflow of North Pacific Intermediate Water through the Tasman Sea was stronger during the LGM. In the Great Barrier Reef along the coast of Queensland , reef development shifted seaward due to the precipitous drop in sea levels, reaching a maximum distance from the present coastline as sea levels approached their lowest levels around 20,700-20,500 years ago. Microbial carbonate deposition in

28056-452: Was the dominant influence on southern Greenland's climate. Illorsuit Island was exclusively covered by cold-based glaciers. Eastern Beringia was extremely cold and dry. July air temperatures in northern Alaska and Yukon were about 2-3 °C lower compared to today. Equilibrium line altitudes in Alaska suggest summer temperatures were 2-5 °C compared to preindustrial. Sediment core analysis from Lone Spruce Pond in southwestern Alaska show it

28224-443: Was weaker during the LGM than in the present day, although it was temporarily stronger during some intervals of ice sheet retreat. The El Niño–Southern Oscillation (ENSO) was strong during the LGM. Evidence suggests that the Peruvian Oxygen Minimum Zone in the eastern Pacific was weaker than it is in the present day, likely as a result of increased oxygen concentrations in seawater permitted by cooler ocean water temperatures, though it

#787212